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dimensional shape sets, ELM’s error rates showed a strong positive correlation
with semantic proximity (r = .84, P < .01). These results were interpreted using

Requests for reprints should be addressed to Mike J. Dixon, PhD, Department of Psychology,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Tel: 519 888 4567 2877; E-mail:
mjdixon@ watarts.uwaterloo.ca).

The authors would like to express our heartfelt appreciation to our colleague and friend ELM
without whose unending patience and altruism this research could not have been conducted. The
first author received support from a postdoctoral fellowship from the Alzheimer Society of
Canada, and supplemental funding from the EJLB foundation. This research was also supported
by grants from the Medical Research Council of Canada to the second and third authors. Martin
Arguin is a Chercheur-Boursier of the Fonds de la Recherche en Santé du Québec.

Ó1997 Psychology Press Ltd

COGNITIVENEUROPSYCHOLOGY, 1997, 14 (8), 1085–1130



an exemplar model  of categorisation  in which  a deficit in exemplar node
specificity is assumed. It is concluded that biological objects aremore likely than
nonbiological objects to have the combination of semantic proximity and shared
values along multiple shape dimensions that pose recognition problems for
patients with such specificity deficits.

INTRODUCTION

Identification deficits following brain damage may affect specific classes of
objects but spare others. Patients may be able to identify accurately all manner
of tools, for example, but have marked difficulty identifying even the most
common animals. This tantalising phenomenon, referred to as category-spe-
cific agnosia,  has generated a great deal of speculation  among  cognitive
neuropsychologists interested in the functional architecture of object identifi-
cation. If one can reliably demarcate the nature of the theoretical boundary that
divides recognisable from unrecognisable objects, then we will have obtained
a vital clue to some of the mechanisms underlying our ability to classify and
label objects.

The observed dissociation in category-specific agnosia that has generated
most research of late is one that separates biological from nonbiological
categories. Although a small number of patients have been documented who
show recognition deficits for man-made objects but a sparing of biological
objects (Hillis & Caramazza, 1991; Sacchett & Humphreys, 1992; Warrington
& McCarthy 1983, 1987), most patients with category-specific deficits show
the opposite pattern; a failure to identify animal and food exemplars, but intact
identification for a host of man-made artefacts. This latter deficit pattern has
been documented among patients with herpes simplex encephalitis (Basso,
Capitani, &Laiacona, 1988; Farah, McMullen, &Mayer, 1991; Hart&Gordon,
1992; Hillis & Caramazza, 1991; Sartori & Job, 1988; Sheridan & Humphreys,
1993; Warrington & Shallice, 1984), inferior temporal lobe strokes or
closed head injuries (Arguin, Bub, & Dudek, 1996; Humphreys, Riddoch, &
Quinlan, 1988; Farah, Hammond, Mehta, & Ratcliff, 1989; Etcoff, Freeman,
& Cave, 1991), and Alzheimer’s patients (Montanes, Goldblum, & Boller,
1995; Silveri, Daniel, Giustolisi, Gainotti, 1991; Mauri, Daum, Sartori, Riesch,
& Birbaumer, 1994). It is this more prevalent pattern of deficit that is the focus
of this paper.

Category-specific problems may arise fromdamage todifferent components
of object recognition. Some patients may have problems accessing the stored
structural knowledge of biological objects. Such patients in a reality decision
task might claim that a picture of a lion with a zebra’s head is a depiction of a
real animal (e.g. patientMichelangelo inSartori &Job, 1988). Others may have
difficulty accessing semantic information about biological objects (e.g. patient
PS in Hillis & Caramazza, 1991). Still others might have intact structural
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knowledge and intact semantics, yet be unable to access the correct name for
biological entities in a confrontation naming task (e.g. patient TU in Farah &
Wallace, 1992). Despite problems at different levels within the object recogni-
tion system, what is intriguing is that such failures appear to occur primarily
forbiological objects, not for man-made ones. The central purpose of this paper
is to shed light on why this might be so.

Our conclusions concerning the biological vs. nonbiological distinction are
based on the identification performance of the patient ELM (Arguin et al.,
1996). When presented with line drawings of man-made artefacts such as tools
or furniture, ELM can quickly and easily identify them. Also, when presented
with the digitised sounds of animals (e.g. dog barking, lion roaring) and asked
to name the animal, he is able to do so. When shown line-drawings of these
same animals, however, his identification performance is extremely impaired.
Thus, ELM presents with a form of category-specific identification deficit
confined to visually presented objects. Consonant with his category-specific
visual agnosia (CSVA) ELM fails on the reality decision test with animals, yet
demonstrates intact encyclopaedic knowledge of these animals when verbally
presented with their names. Thus, when relating ELM to other patients in the
literature, the most appropriate comparisons are to other CSVA patients like
Michelangelo, who also appear to have problems accessing the structure of
objects from memory. However, on a more general level, ELM’s identification
performance in the present study may illuminate key differences between
biological and nonbiological objects, which may have ramifications for inter-
preting the behaviour of all patients with category-specific deficits for living
things.

Two schools of thought have emerged in attempting to explain why biologi-
cal objects are harderforpatients toidentify thanman-madeobjects. Oneschool
postulates that biological and nonbiological objects are each processed by their
own specialised subsystems, and category-specific deficits emerge following
damage to one of these subsystems. A second school maintains that a single-
object recognition system processes both types of objects, but the nature of the
shapes and/or the semantics of biological objects renders them preferentially
susceptible to identification deficits following brain damage.

Considering first the specialised subsystem accounts, Silveri and colleagues
have proposed that knowledge of biological and nonbiological categories are
processed by separatesystems (Silveri & Gainotti, 1988) andstored indifferent
anatomical locations (Silveri, Daniele, Giustolisi, & Gainotti, 1991). This
viewpoint would predict a sharp division between artefacts, which are recog-
nisable, and biological objects, which are not. Contrary to this prediction,
although most categories obey this theoretical boundary, there are certain
man-made objects, like musical instruments, which often pose particular prob-
lems for patients who otherwise show deficits only for biological items
(Damasio, 1990, Warrington & Shallice, 1984).
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Sartori and Job (1988) and Sartori, Job, and Coltheart (1992) maintain that
different categories of objects each have their own separate structural descrip-
tions, and that category-specific deficits ensue following selective damage to
only some of these structural descriptions. The myriad of potential semantic
categories that we possess and the host of separate structural description
systems required to support them prompts one to consider alternatives.

The second school of thought abandons the notion of separate subsystems
for biological and nonbiological objects and views CSVA as an emergent
phenomenon attributable to differences between biological and nonbiological
objects in terms of their structural and semantic properties. Warrington and
colleagues (Warrington & McCarthy, 1987, 1994; Warrington & Shallice,
1984) postulate that semantics is parsed into knowledge concerning sensory
properties (e.g. what the object looks like) and knowledge concerning function
(what the object does). If the knowledge of sensory properties becomes dam-
aged, biological objects become unrecognisable becausediscriminationamong
exemplars relies primarily on sensory properties. Artefacts can still be recog-
nised because patients retain knowledge of their often unique functions. Thus,
category-specificity has nothing to do with whether an object is biological or
nonbiological perse, but rather, whether ornotan objectcanbe definedreliably
according to its function.

An alternative model is proposed by Humphreys et al. (1988), who view
CSVA as emerging from an interaction of structural similarity and semantic
proximity where brain damage causes recognition deficits for sets of objects
whose members are both visually similar and semantically close. To account
for patients primarily showing deficits for biological objects, they cite data
showing that normals rate line drawings of biological objects as being visually
more similar than those of artefacts. Further, in a critical experiment, judges
were shown pairs of pictures and asked to rate them on a 7-point Likert scale
for both their semantic and visual similarity. Based on these ratings, sets of
objects varying in semantic and visual similarity were constructed. Consistent
with their interaction account, the performance of the CSVA patient JB was
significantly impaired on a word–picture matching test only when distracters
were both visually and semantically similar tothetarget. Whendistractors were
visually and semantically dissimilar, or visually dissimilar but semantically
related, JB performed normally.

The proposal of Humphreys etal. provides a reasonable preliminary account
for why most biological objects are unrecognisable (they form groups of
structurally and semantically similar objects). In addition, these same con-
straints account for why certain nonbiological objects like musical instruments
might also pose problems for CSVA patients (they too can form groups of
objects that are structurally and semantically similar). The approach used to
test the interaction hypothesis, however, suffers from a basic shortcoming that
pervades almost all investigations of category-specific agnosia; the fundamen-
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tal inability to specify, at the level of structure, how the actual forms of the
tested objects differ from one another.

Almost without exception, researchers have used line drawings of objects
to investigate CSVA. The central drawback  is that  the underlying  shape
primitives of the forms depicted by line drawings are unspecified. Although
picture norms  (Snodgrass &  Vanderwart, 1980) are crucial for  matching
biological vs. nonbiological objects along factors like familiarity and im-
age–name agreement, they are unable to specify the underlying shape primi-
tives that allow us to distinguish between the shape of a saw and that of a cigar.
Hence, exactly what mechanisms, if any, fail at the level of structural shape
processing in patients who display CSVA remains a matter of conjecture.

Similarly, although it is reasonable to surmise that CSVApatients may have
problems discriminating between items that are visually similar (Humphreys
et al., 1988), without an understanding of a given object’s shape primitives, it
is difficult to know what constitutes visual similarity. That is, although ratings
of similarity can easily be obtained from normals, the principles that observers
use to base their judgements are unknown, hence the visual similarity that
normals ascribe to a given set of objects may not be of the sort that is crucial
to CSVA.

A second and arguably more important drawback in studies using line
drawings is that the form of the portrayed object is inextricably yoked to the
semantics of that object. Thus, if patients can identify line drawings of an axe,
a pen, and a tie, but not a chicken, an eagle, and a crow, one never knows
whether it is because the birds are toosimilar inmeaning, or too similar in form.
Because form is yoked to semantics, any change in one domain necessitates
changes in the other domain. This inability to manipulate visual similarity and
semantic proximity independently is increasingly problematic when one con-
siders that the  basis  underlying normals’ visual similarity ratings  of line
drawings is unknown.

Shape Primitives in Category-specific Visual
Agnosia
The problem of line drawings having unknown shape primitives was circum-
vented by Arguin et al. (1996) by employing computer-generated blobs with
well-defined and empirically manipulable primitives to investigate shape iden-
tification problems in the CSVA patient ELM. Arguin et al. generated shapes
using three shape dimensions: Bending (B), Elongation (E), and Tapering (T).
Shapes similar to those used by Arguin et al. are presented in Fig. 1. Single
dimensionsets weregeneratedby assigning equally spacedvalues along agiven
dimension and generating shapes corresponding to these values. Conjunction
sets, depicted in the bottom rows of Fig. 1, were generated by combining two
stimulus dimensions while holding the third dimension constant. Conjunction
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sets will be referred to by the first letters of their crucial dimensions and the
value of the third irrelevant dimension, hence ET bent would be shapes with
the combinations of elongation and tapering, all of which are bent to an equal
degree.

It will be noted that for each conjunction set there are two relevant dimen-
sions that must be remembered in order to identify a given exemplar. Consider
the BE untapered shape set in Fig. 1. In order to distinguish the banana shape
from others in the set one must remember that it is both bent and elongated. If
one remembers only bending, then the two bent shapes will get confused in
memory; if one remembers only elongation then the two elongated shapes will
get confused. Thus, in order to disambiguate the members of this set, values on
two shape dimensions must be retrieved because for every shape there is
another shape in the set that has the same value on one of these critical
dimensions. In the single dimension sets, however, there is only one relevant
dimension, and there are no shared values along this relevant dimension.

Inorder toinvestigatewhethershapes thatsharedmultiplevisual dimensions
posed particular  problems for ELM, Arguin et al.  devised  the following
procedure. Four blobs comprising either the single dimension or conjunction
set were simultaneously presented in the four corners of thescreen for a limited

FIG. 1. Single dimension(1d) andconjunction sets (2d) used in Arguin, Bub, and Dudek, (1996)and
in the current experiments 1 through 5.
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duration. On test trials one of these blobs was centrally presented and ELM was
asked to point to this blob’s former location. ELM was consistently better able
to perform this pointing task with items from single dimension sets (29.2%
errors) than when given items from conjunction sets (56.7% errors). Impor-
tantly, Arguin et al. showed that in a perceptual matching-to-sample task where
memory requirements were minimised, ELM made more errors on the more
perceptually similar single dimension sets (8.8%) than on the conjunction sets
(0.004%) errors.

These and related experiments indicated that ELM’s problems with shape
identification involve memory for the visual properties of objects, not their
perception. Specifically, he has difficulty extracting from memory information
about multiple critical shape dimensions (e.g. as a real-world example, he
knows a bananais long and thin, but cannot remember if it is tapered orcurved).
Although certaindimensions appearedeasier forELM toremember thanothers,
in general it did not matter which shape dimensions were combined to form a
conjunction set; as long as values along more than one dimension had to be
extracted from memory to disambiguate exemplars, ELM’s performance suf-
fered dramatically.

Importantly, ELM’s deficit was shown to interact with object semantics. In
a reaction time experiment Arguin et al. required ELM to name single dimen-
sion and conjunction sets of blobs as quickly as possible. In one condition
identifications were made using fruit and vegetable labels corresponding to
what the blobs looked like. For example, the blobs in the ET unbent set in Fig.
1 were given the labels “cucumber”, “carrot”, “melon”, and “pear”. In a second
condition the exact same blobs were given artefacts labels that also bore a
resemblance to theblob’s form (cigar, tent-pen, balloon, andspinning-top). For
fruit and vegetable labels, ELM’s reaction times followed the expected pattern;
single dimension sets were named significantly faster than conjunction sets.
For the same blobs named using artefact labels, however, conjunction set
reaction times were as fast as those for single dimension sets, and significantly
faster for the same shapes labeled using fruit and vegetable names. Thus, these
results provided preliminary evidence that ELM’s difficulties with sets of
objects sharing values along critical shape dimensions may depend upon the
semantic proximity of the labels applied to the shapes being identified.

ELM and Models of Category Learning

Although the behaviour of ELM in the Arguin et al. study is difficult to
reconcile with any of the extant neuropsychological theories of CSVA, it can
be readily understood within the framework of some exemplar models of
category learning in normals (Estes, 1994; Kruschke, 1992; Nosofsky, 1986).
These models were developed to explain the manner in which normals catego-
rise objects, rather than identify them. Technically, however, identification and
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categorisation differ only in a very elementary statistical sense: for identifica-
tion every exemplar is assigned a unique response, whereas for categorisation
many examplars can be mapped to the same response. Thus, highly similar
exemplars will often lead to correct categorisation, but for identification the
greater the exemplar similarity the greater the probability of identification
errors.

In Kruschke’s (1992) ALCOVE model, there are three layers: input nodes,
hidden exemplar nodes, and output nodes. Each input node encodes stimulus
values on a single psychological dimension (e.g. bending, elongation, and
tapering in Fig. 1). The hidden exemplars nodes, to which inputs are connected,
are represented as points in a multidimensional psychological space. The
location of these hidden nodes corresponds to the various combinations of
shape dimension values that comprise the exemplars within a set. For example,
in an ALCOVE model designed to identify the ET unbent set in Fig. 1 there
would be hidden nodes located at [0,0,0], [0,0,1], [0,1,0], and [0,1,1] within a
psychological space in which the location coordinates are values on bending,
elongation, and tapering, respectively. In this multidimensional psychological
space the objects [0,0,0] and [0,0,1] would lie closer to one another (differing
only in tapering), than the objects [0,0,0] and [0,1,1], which differ on both
elongation and tapering. Hidden exemplar nodes have activation profiles. They
respond most strongly to stimuli which have the same values as their location
coordinates (e.g. the exemplar node located at [0, 1, 1] would respond maxi-
mally to a presented shape comprised of bending = 0, elongation = 1, and
tapering = 1, butstill wouldrespond strongly toexemplars comprisedof similar
values [e.g. 0, .9, 1]). Activation falls off exponentially as similarity between
the input stimulus and the exemplar node location decreases. The spatial extent
of these activation profiles (i.e. the “receptive field”) of these hidden exemplar
nodes depends on a specificity parameter. Large specificities mean that hidden
nodes will respond only to stimuli very close to the exemplars that they code.
Thus, the [0, 1, 1] shape would respond to shape [0, .9, 1.1], but not to shape
[0, .5, 1]. Small specificities mean large receptive fields. Thus, the exemplar
node located at position [0, 1, 1] would become activated by both shape [0, .5,
1] and shape [0, 0, 1] but perhaps not [0, 0, 0], which is located too far away in
psychological space. Output nodes, representing responses, have learned con-
nection strengths to the exemplar nodes.

ALCOVE can account for a wide range of categorisation phenomena be-
causetheconnections betweentheinputnodes andtheexemplarnodes aregated
by an attentional dimension strength. This gating mechanisms acts as a multi-
plier, capable of increasing or decreasing the strength with which a given
dimension connects to exemplar nodes. Over the course of learning, perform-
ance is optimised by placing greater weights on those stimulus dimensions that
best define categories (for identification each exemplar is a separate category).
In ALCOVE, learning to identify the ET unbent shapes would be optimised by
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decreasing the attention strength on the uninformative bending dimension, but
increasing strengths on the two relevant dimensions. Similarly for a single
dimension set, performance would be optimised by increasing the strengths for
the single relevant dimension and decreasing the weights for all other dimen-
sions. ALCOVE mimics the performance of normals in that categorisations
basedonsingledimensions arelearned morequickly thancategorisations based
on multiple dimensions. In ALCOVE the greater the number of relevant
dimensions, the more difficult the categorisation (or identification) problem.

ELM’s blob identification performance can be interpreted most parsimoni-
ously by assuming a deficit in the specificity parameter. His deficit is that he
has much larger exemplar-node receptive fields than normal. These wide
receptive fields tend to overlap for objects that are close together in psycho-
logical space, and these overlapping receptive fields cause ELM to confuse
these closely located objects. In our ET unbent conjunction set example, the
hidden exemplar node that responds maximally to the [0,1,1] shape would still
become activated by [0, 0, 1] shape, causing ELM to confuse these items when
trying to identify them. Although wider than normal, the patterns of his
confusions indicate that his exemplar-node receptive fields are not infinitely
wide. That is, he seldom confuses the [0,1,1] shape with the [0,0,0] shape.

ELM can compensate for wide activation profiles when exemplars can be
distinguished using a single dimension by increasing the attentional dimension
strength for that dimension and gating the other irrelevant dimensions. How-
ever, when objects within a set share values along multiple dimensions (as in
conjunction sets), this gating strategy is not effective and his performance
suffers dramatically1.

1
Asimple computer simulation for identifying single dimension and conjunction sets of blobs

was conducted using the ALCOVE architecture. The single dimension set include four equally
elongated shapes varying inbending. Twostimulus dimension nodes, fourhiddenexemplarnodes,
and  four  response  nodes were used. To mimic normal  single dimension  set performance,
attentional dimensionstrengths were set by hand at 4.0 for bending and 0 for elongation, to reflect
performanceoptimisation by attending tothesingle relevantdimensionof bending. Thespecificity
parameter that controls the hidden exemplar-nodes receptive field size was set by hand at c = 8
(high specificity–small receptive fields). Stimuli varying onthis dimension were presented to this
architecture. Results of this simulation were 99% correct detections. To simulate ELM’s impair-
ment, the specificity parameter was set to ¼ that of normal (c = 2). This resulted in 81%
performance (approximately the single dimension set performance ELM showed in Arguin et al.,
1996).

Forconjunctionsets attentional dimensionstrengths wereset to2.0 foreach stimulus dimension.
The model was presented with shapes from the BE untapered set. Results of the simulation
revealed 97% correct identifications when specificity was high (c = 8). Once again to mimic
ELM’s impairment, phi was reduced by ¼. With c = 2, the model correctly identifies a given
exemplar 56% of the time. These results are consonant with the error rates observed by ELM in
Arguin et al. (1996).
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Although  such a model  can account for ELM’s single  dimension and
conjunction set performance in tasks devoid of semantic content, it must be
recalled that semantics can modulate his conjunction set performance (having
ELM label the ET unbent blobs, a cigar, a tent-peg, a balloon, and a spinning
top leads to fast, nearly error-free performance).

In order to account for semantic modulation of conjunction set errors, all
that is required is the reasonable assumption that the label borne by a shape
is a contributing determinant of where a hidden exemplar node is located in
psychological space. Thus, in this new conception of ALCOVE, the location
of the hidden units are determined not only by structural information
(Bending, Elongation, Tapering), but also by semantic information. One can
assume that, within a multidimensional space that uses both structural and
semantic attributes as coordinates for exemplar locations, semantically
related objects are located close to one another whereas semantically unre-
lated objects are located further apart. Thus, in this psychological space, the
hidden exemplar nodes for objects labeled as carrot and cucumber would lie
closer together than the exact same blobs labeled tent-pen and cigar. Since
closer objects are more confusing, the former should take longer to disam-
biguate than the latter.

The following series of studies, conducted withthe help of the CSVApatient
ELM and guided by exemplar models like ALCOVE, will look at the influence
of both structural and semantic factors on exemplar identification. In so doing
we will address both the problem of line drawings having unknown underlying
primitives and the problem of semantics being yoked to object form. The first
problem, concerning the unspecified nature of line drawings, will be addressed
by using Arguin et al.’s computer-generated shapes. In Experiment 1 these
shapes will be used to replicate Arguin et al., and provide evidence that the
CSVA patient ELM has problems disambiguating exemplars from sets of
objects that share values on multiple critical shape dimensions. In Experiments
2 through 6 these same shapes will then be used to decouple the influence of
semantics in object recognition from the influence of object form. Shapes will
arbitrarily be associated with concepts that are either semantically close (e.g.
robin, crow, owl, turkey) or semantically disparate (helicopter, telephone, saw,
tennis-racquet). Based on the notion that ELM has problems disambiguating
exemplars that lie close to one another in a multidimensional psychological
space (because of abnormally wide exemplar-node receptive fields) it is pre-
dicted that identification performance will suffer the most when objects within
a set have both overlapping visual features and refer to semantically close
concepts. By using the same computer-generated shapes to stand for both
semantically close and semantically disparate concepts we will present a
paradigm which, for the first time in Neuropsychology, allows the structure of
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objects to be held constant, and the effects of semantic proximity on object
recognition to be directly evaluated.

EXPERIMENT 1

The Nature of the Structural Processing Deficit in
ELM
The exemplar model of category-specific visual agnosia proposed earlier is
somewhat similar to that of Humphreys et al.’s (1988) in that both theories
reject the notion of specialised subsystems for biological and nonbiological
categories of objects, interpreting category specificity instead as an emergent
phenomenon based on the structural and semantic properties of the objects
being recognised. The primary difference between the two accounts concerns
the notion of visual similarity. For Humphreys et al., visual similarity is
operationalised by normals’ ratings of how similar objects appear. In the
exemplar model account described earlier, visual similarity depends on the
number of shape dimensions that must be extracted from memory in order to
identify a given member of a set uniquely.

The single dimension and conjunction sets used by Arguin et al. may prove
heuristically useful in empirically distinguishing between these two accounts
of CSVA. Humphreys et al. surmised that sets of objects which normals judge
to be more structurally similar would pose greater recognition problems for
CSVA patients than less structurally similar sets. Looking at Fig. 1, however,
the single dimension sets appear to be more structurally similar than the
conjunction sets, but as Arguin et al. have repeatedly shown, ELM has a much
easier time distinguishing exemplars from this set than from the more structur-
ally distinct conjunction sets.

Experiment 1 will serve as a replication of Arguin et al., using a slightly
different paradigm. Instead of presenting all four exemplars on the screen at
once, on learning trials, exemplars will be presented one at a time. (This will
prevent ELM from making simultaneous comparisons of all set members.
Instead he will have to encode set members sequentially—a situation that is
arguably more analogous toveridical object learning.) Inaddition, Humphreys’
notion of structural similarity will be pitted against our exemplar model. It is
predicted that normal raters will rate a single dimension set as being more
visually similar than a conjunction setbut, incontrast towhat must be predicted
by Humphreys et al., ELM will demonstrate fewer identification errors for this
single dimension set than for a more structurally distinct conjunction set
because he can compensate for his abnormally wide receptive fields by gating
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irrelevant dimensions and increasing the attentional dimension strength on the
single relevant dimension.

Method

ELM

Clinical history. ELM was born in 1928. Now retired, he formerly worked
in the purchasing department of a manufacturing plant. In December of 1982
ELM was admitted to hospital for heart failure. Neurological symptoms of
sudden onset were reported on 5 December 1982. These included: nominal
dysphasia, left/right confusion, dyscalculia, and agraphia without alexia. An
emergency CT scan revealed a hypodensity deep in the right mesiotemporal
lobe. The neurological symptoms resolved and upon discharge ELM suffered
from a residual nominal aphasia and mild memory impairment, which later
disappeared. InAugust of 1985 he was readmittedtotheMontreal Neurological
Hospital, presenting with pronounced anomia, memory impairment, and
dysgraphia. A CT scan conducted on 9 August revealed irregular enhancing
lesions deep in the left and right mesiotemporal lobes. His condition improved
and he was discharged on 21 August 1985.

Neuropsychological assessment. In October of 1987 ELM underwent
neuropsychological testing, which revealed normal IQ(93 WAIS-Rverbal, 91
WAIS-R performance) but residual impairments in the delayed recall of
both verbal (WMS verbal = 10.5) and pictorial material (WMS recall of
geometric forms = 1). Also, he showed impairment invisual object recognition
(Wingfield Object Naming 11/26) and face recognition (Benton Facial
RecognitionTask = 33). Inclinical testing his objectrecognitiondeficitseemed
to be attributable to an impairment in identifying pictures of animals.

A more in-depth analysis of his visual recognition deficit using Snodgrass
and Vanderwart (1980) pictures revealed a marked discrepancy between bio-
logical and nonbiological objects in confrontation picture naming. He correctly
identified only 21%of biological items, but correctly named 92%of man-made
artefacts. Although  name frequency and familiarity were  both significant
predictors of his naming performance, thebiological–nonbiological distinction
was the strongest predictor of naming accuracy within a multiple regression
framework.

In a reality decision task ELM was shown pictures of stimuli and asked
whethereachone was real ornot. Negative items were createdby interchanging
parts (a cow’s body with a dog’s head). ELM could make reality decisions with
objects (38/41) but not with animals (41/70).

Although ELM’s ability to recognise pictures of objects is impaired, his
encyclopaedic knowledge of them is intact. For example, when given the word
camel and asked to define what it was, ELM said “it is an animal that more or
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less lives in the Sahara desert. Some people refer to it as ‘the ship of the desert.’
It can go for days without drinking water.”

Importantly, ELM’s perception is intact. He cancopy bothcomplex geomet-
ric forms (Copy portion of Rey’s Complex Figure = 31/33) and animals. He is
normal in naming photographs of household objects taken from both canonical
(26/27) and noncanonical views (25/27). He can also match canonical and
noncanonical views of animals (7/7) and artefacts (18/19). He shows normal
global to local interference for Navon Stimuli, and has no problem identifying
overlapping objects.

Control Participant(s)

A female, age-matched control was used in the shape location phase of this
experiment. Inaddition, five university students wereaskedtoprovide pairwise
similarity ratings for the single dimension and conjunction sets used in the
experiment.

Materials and Procedure

Stimuli. Computer-generated shapes with specified values of bending,
elongation, and tapering were used throughout this experiment. Stimuli con-
sisted of black blobs displayed against a white background. The conjunction
set comprised four items, which varied in elongation and bending but had
consistent values on tapering. The single dimension set comprised four items,
which varied only in elongation. All stimuli were presented using a Macintosh
Quadra computer interfaced to a AppleColour high resolution RGB monitor.

Similarity ratings. Five independent judges were each shown the eight
shapes comprising the single dimension (four shapes) and conjunction (four
shapes) sets. Shapes were shown one at a time, with the fourshapes comprising
the single dimension sets displayed first, followed by the four shapes compris-
ing the conjunction set. Each set was shown three times. Following this
familiarisation phase, participants were askedtogive “visual similarity”ratings
to pairs of shapes using a 7-point Likert scale ranging from 1 (very dissimilar)
to 7 (very similar). Twelve pairs of shapes (six pairs comprising the single
dimension set, and six pairs comprising the conjunction set) were rated. These
12 pairs were presented in random order.

Shape–Location Learning

Learning trials. Prior to the experiment, each of the four shapes within a
given set were randomly assigned a location on the computer screen (top,
bottom, left, or right). These shape–location pairings remained constant
throughout the experiment. To prevent participants from using local environ-
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mental cues (e.g. tapered shapes always pointing in a given direction), on a
given trial the shape would appear in its assigned location using one of eight
orientations (rotations of 0, 45, 90, 135, 180, 225, 270, 315 degrees from
vertical). On learning trials, shapes were presented in their respective locations
one at a time (see Fig. 2). Shapes remained on the screen until the participant
indicated they had adequate time to view the stimulus and memorise its
location. Eight learning trials (two of each shape) were presented, following by
eight test trials (two of each shape).

Test trials. On test trials, shapes were presented in the middle of the screen
(using one of the eight orientations) and ELM was asked to name its former
(learning-trial) location (see Fig. 2). This pattern of 8 learning followed by 8
test trials was repeated 12 times, for a total of 96 learning and 96 test trials.
After a 5-minute break a second, identical block of 96 learning and 96 test trials
was administered. Shapes were presented at each of the eight orientations an
equal number of times.

The single dimension and conjunction sets were run on separate days.

Results

Similarity Ratings

For each shape set, there are six pairwise contrasts to be made among the
four shapes (AB AC ADBC BDCD). Thus, eachparticipant made six pairwise

FIG. 2. Shape-location paradigm and Experiment 1 results. Shapes were displayed in a fixed,
preassigned location on learning trials. On test trials the blob was presented in the centre of the screen
and the subject attempted to name the location associated with that blob. Results for block 1 and 2 are
presented for single dimension and conjunction sets.
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ratings for single dimension sets and six pairwise ratings for conjunction sets.
The data of the 5 participants were pooled to yield 30 (6×5 participants)
pairwise ratings of the single dimension set and 30 pairwise ratings of the
conjunction set. Participants gave significantly higher similarity ratings to the
single dimension set (mean = 3.6) than the conjunction set (mean = 2.4) [t(29)
= 2.17, P < .05].

Shape Identification

In assessing the significance of shape identification trials through all experi-
ments, a= .01.

Control. For both the single dimension and conjunction sets the age-
matched control participant had correctly paired the shapes with their locations
after the first set of 8 learning trials (0 errors on 96 trials). Because of perfect
performance on block 1 the control was not tested on block 2. Because of the
absence of errors the control data will not be compared statistically to ELM’s
performance but will serve only to indicate how easy the task is for normal
participants.

ELM. For shapes varying along a single dimension, ELM made 5/96
(5.2%) errors on block 1 and 4/96 (4.2%) errors on block 2. On the conjunction
set, ELM made 39/96 (40.6%) errors on block 1 and 40/96 (41.6%) errors on
block 2. These results are depicted in the right-hand panel of Fig. 2. ELM’s
performance was significantly poorer for conjunction sets relative to single
dimension sets for both block 1 (c2 = 26.27, P < .001), and for block 2 (c2 =
29.45, P < .001) respectively.

Discussion

The Nature of the Structural Processing Deficit in ELM

The markedly poorer performance of ELM on the conjunction set, relative
to the single dimension set2, indicates severe problems remembering shape–

2
The single dimension set error rate is somewhat lower in this location experiment than in

Arguin et al. (1996). In Arguin et al., single dimension sets contained a blob that had a zero value
on the relevant single dimension (using the example for the elongation set they used a blob that
was circular, along with three blobs of increasing elongation; for bending, an unbent blob along
with three blobs of increasing bending). Such a situation may have caused ELM to treat these
one-dimensional sets as having more than one critical dimension. In the bending set, ELM may
have coded the unbent shape as being elongated, and the other three as bent. In the present
experiment, blobs with zero values were avoided, a situation that may focus attention unequivo-
cally on a single dimension.
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location pairings when identification of a given shape involves extracting from
memory specific values along more than one relevant shape dimension.

It should be noted that ELM’s problem is not one involving the ability to
perceive the differences between these shapes. In a previous experiment by
Arguin et al., ELM actually showed better performance for conjunction sets
relative to single dimension sets whenthememory components of thetaskwere
minimised. Hence ELM’s problem is not one of perception per se, but rather
reflects a post-iconic memory problem for conjunctions of shape features.

Humphreys et al. (1988) argued that the specific types of stimuli that would
pose problems for CSVA patients are objects that are structurally and seman-
tically similar. Although this particular experiment does not deal with the
semantic component of this interaction hypothesis, it has a great deal to say
about structural similarity. Using the same 7-pointLikert scale rating procedure
as that employed by Humphreys et al., the set of shapes that normals rated as
being visually more similar posed less of an identification problem for ELM
than the set whose members were rated as being relatively dissimilar.

Such a finding suggests that the visual similarity judgements of normals do
not always accurately reflect the underlying principles that determine shape
identification problems in a category-specific agnosia patient like ELM. An
exemplar model that assumes abnormally wide receptive fields for ELM can,
however, account for why he has trouble with conjunction sets—exemplars
within the set are stored close together in multidimensional space, and the
abnormally wide receptive fields for these closely stored exemplars tend to
overlap—a situation that generates confusions among these closely stored
objects. More importantly, we can explain why objects within a single dimen-
sion set that was rated as visually closer than the conjunction set posed fewer
identification problems: ELM can disambiguate exemplars by gating irrelevant
dimensions and increasing the attentional dimension strength on the single
relevant dimension.

The relevance of these distinctions to everyday object recognition can be
made clear by considering the set: cup, bowl, glass, and vase. This constitutes
a visually similar set of objects that is also semantically similar. As such,
Humphreys et al. must predict that a CSVA patient like ELM would confuse
these objects. Our exemplar model, by including dimensional gating
mechanisms, explains why ELM is able to identify these objects flawlessly in
real life; they vary only on the single dimension of elongation.

From Structure to Meaning: The Role of Semantic
Proximity in CSVA

Arguin et al. (1996), and Experiment 1, demonstrated that ELM has prob-
lems in identifying shape sets in which exemplars shared values on critical
shape dimensions. As previously mentioned, this cannot in and of itself account
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for category-specific visual agnosia. After all, the shapes of a balloon, cigar,
spinning top, and tent-peg form a conjunctionset (ETunbent)where exemplars
share values in critical shape dimensions, yet ELM can quickly and correctly
label these shapes. Semantics therefore, must play a critical role in CSVA.

Although at first it may appear that Experiment 1 is devoid of semantic
content, it must be noted that in this paradigm the category labels (up, down,
left, right) are semantically related (all are directions, locations on a computer
screen, etc.) These semantically related labels may serve to heighten the
similarity among the four exemplars, relative to a paradigm in which shapes
were associated with completely unrelated labels (e.g. “cigar”, “spinning top”,
“tent-peg”, and “balloon” used by Arguin et al., 1996). In all ALCOVE-type
models, in which the locations of hidden exemplar nodes within a multidimen-
sional space depend upon both visual information and semantic information,
the conjunction set of blobs whose semantics involve four computer screen
locations would be stored closer together in this space than a conjunction set
of blobs whose semantics are unrelated (cigar, tent-peg, etc.) Because closely
stored objects are more confusing than objects stored further apart, for those
like ELM, with abnormally wide exemplar-node receptivefields, it follows that
they would have a much more difficult time with the location task than a
blob-labeling task in which labels are semantically unrelated.

If these contentions are correct, then a number of hypotheses can be gener-
ated. First, because of intact attentional gating mechanisms, ELM should be
able to disambiguate the exemplars of single-dimension sets regardless of their
semantics. Second, when sets of objects are used that preclude the use of
attentional gating (e.g. conjunction sets), ELM’s performance should depend
on the semantics associated with the exemplars within a set. For sets of objects
that have overlapping visual features and overlapping semantics, ELM should
show massive confusions. For similar shapes having disparate semantics,
however, fewer identification problems should ensue because the disparate
semantics serve to provide greater separation of these objects within multidi-
mensional psychological space.

Inordertotest these hypotheses one couldsearchforsemantically proximate
and semantically disparate concepts whose shapes resemble the single dimen-
sion and conjunction sets in Fig. 1. Such an approach is ill advised because few
of the blobs that can be generated by varying elongation, bending, and tapering
actually look like real-world objects. An alternative approach is toabandonany
real-world correspondence between the blob’s form and the label we asked
ELM toascribe to it. This can be done by repeatedly accompanying blob Awith
thesound of a dog barking; blob Bwith a wolf howling, blobC with an elephant
trumpeting, etc. Thus when ELM labels these shapes he will simply name the
sound associated with that shape. The advantage of not having any correspon-
dence between the shape of the blob and the label associated with it is that the
exact same set of blobs can be paired with either semantically similar (e.g.
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robin’s song, crow’s caw), or semantically disparate experiences (e.g. sound of
a helicopter, sound of a saw, etc.) Thus, form can essentially be held constant
and the role of object semantics in CSVA assessed independently.

EXPERIMENT 2

Method

Subjects

ELM and the same age-matched control in Experiment 1 were retested in
this experiment.

Materials

Stimuli. Similar computer-generated shapes comprising single dimension
and conjunction sets as described in Arguin et al. (1996) and in Experiment 1
were employed in this experiment.

Shape sets and soundpairings. The following sets of sound-shape pairings
were used:

1.  The semantically disparate sound of a leaf-blower3, a telephone, and
water pouring into a glass, were paired with the conjunction set (BE
untapered) and the single dimension set B.

2.  The semantically close sounds of a dog barking, a horse neighing, a wolf
howling, and an elephant trumpeting were paired with the conjunction
set (BE tapered) and the single dimension set (E).

3.  The semantically disparate sounds of a saw, a tennis-racquet, hitting a
tennis-ball, a photocopier, and a helicopterwere paired with theconjunc-
tion set (ET not bent), and the single dimension set (E).

4.  The semantically close sounds of a robin, a crow, an owl, and a turkey
were paired with the conjunction set (ET unbent) and the single dimen-
sion set (B).

5.  The semantically disparate sounds of a saw, a tennis-racquet, a photo-
copier, and a helicopter were paired with the SET 4 shapes (ET, unbent).

Each shape set is depicted in Fig. 1.

3
The original sound recording was a somewhat distorted recording of a wasp. On sound

identification trials ELM insisted that this recording sounded more like a leaf-blower than a wasp,
so we used this concept instead.
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Sound identification trials. Prior to testing a given shape set, ELM was
presented with the digitised sound recordings unaccompanied by shapes. Each
sound recording was presented 6 times for a total of 24 trials and ELM was
asked to match the sound with one of sound names written on an index card.

1. Learning trials: On a given trial a single shape wouldappear in thecentre
of the screen using one of eight orientations (rotations of 0, 45, 90, 135, 180,
225, 270, 315 degrees from vertical). Along with the shapes a cursor (in the
form of a pointing finger)wouldappear. ELM was instructed toplacethecursor
over the shape and click the mouse, whereupon the sound recording would be
played over two small speakers. Shapes remained on the screen during the
playing of the sound recordings and stayed on until ELM indicated he had had
timetomemorise the shape–sound pairing. Eight learning trials were presented
(two of each shape) in random order with the restriction that identical shapes
did not immediately follow one another.

2. Test trials: Following the eight learning trials, eight test trials were
presented. On test trials, shapes were presented in the middle of the screen
(using one of the eight orientations) and ELM was asked to name the sound
associated with it (e.g. saw, robin, etc.) An index card containing the names
(e.g. “ROBIN”, “CROW”, “TURKEY”, “OWL”)of thefoursoundalternatives
was provided for ELM to refer to as needed. The 8 learning–8 test trial pattern
was repeated 12 times, for a total of 96 learning and 96 test trials. After a
5-minute break a second identical block of 96 learning and 96 test trials was
administered. Shapes were presented at each of the eight orientations an equal
number of times. The procedure for learning and test trials is depicted in the
upper left panel of Fig. 3.

To avoid interference effects caused by the same shapes standing for more
than one concept, on any given day only two shape sets were administered.
These sets used different shapes and different sound assignments. Conjunction
sets and single dimension sets were run on alternate days. The order of set
presentation was counterbalanced. On day one the (semantically disparate)
conjunction set BEuntapered was run first followedby the (semantically close)
BEtapered set. On day two the(semantically close) single dimension set Ewas
run followed by the (semantically disparate) set B. On day three conjunction
sets were run in the reverse order relative to day one: (semantically close) ET
unbent was run first followed by the (semantically disparate) ET bent set. On
day four the single dimension sets were run in reverse order relative to day two:
(semantically close) set B, followed by (semantically disparate) set E.

Finally, a third, semantically disparate, set was run several weeks later (saw,
tennis-racquet, photocopier, helicopter) using the exact same shapes (ET un-
bent) that were used in set 4 (which was previously paired with the four bird
songs).
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FIG.3. ELM’s block1 and2, errorpercentages forsingledimensionandconjunctionsetswhenshapes
were paired with semantically close or disparateconcepts (Experiment2)..
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Results
ELM showed flawless performance in the sound identification trials (24/24
correct identifications on each of the four sets of sounds.

Shape Identification

Control. Error rates for theage-matched control were once again at or near
floor levels. Of the few errors that were made all occurred during the first 16
test trials. The remaining 80 test trials were error free. For this reason only 1
block of 96 learning and 96 test trials were run for the control participant for
all sets. For conjunction set 1 (semantically disparate) 3/96 errors were made.
On conjunction set 2 (foursemantically close animals) a single error was made,
and the two remaining conjunction sets were error free. For single dimension
sets performance on set 1 (semantically disparate) was 6/96 errors, on set 3 (4
semantically close birds) a  single error was made, and on sets 2  and 4
performance was flawless. Onceagain, becauseof the restrictedrangeof errors,
her data were not analysed, but served only to indicate the ease with which a
non-brain-damaged individual can perform these blob-labeling tasks.

ELM. Error rates for ELM were as follows:

1. Conjunction sets
a. (Semantically close): Error rates ranged from 50%to 68%to on block 1

and 32% and 50% on block 2. These results are depicted by the dark bars in
sets 2 and 4 of Fig. 3. Combining results from these semantically close sets,
error rates were (117/192 = 60.94%) on block 1 and (79/192 = 41.14%) on
block 2.

b. (Semantically disparate): Error rates ranged from 30.2% to 38.5% on
block 1, to 0% (both sets) on block 2. These results are depicted by the dark
bars in sets 1 and 3 of Fig. 3. Combining there sets, error rates were (66/192)
= 34.37%on block 1 and (0/192) = 0.0%on block 2. Using the combined data
sets and comparing semantically close to disparate sets, the conjunction sets
showedsignificantly highererror rates for semantically closesets onbothblock
1 (60.94% vs. 34.37%, c2 = 7.39, P < .01), and block 2 (41.14% and 0%c2 =
41.14, P < .0001).

2. Single dimension sets
a. (Semantically close): Error rates ranged from 10.4% to 37.5% on block

1 and between 10.4% and 18.8% on block 2. These error rates are depicted by
the light bars in sets 2 and 4 of Fig. 3. Combining these semantically similar
single dimension sets, error rates were 25.56%on block 1 and 14.58%on block
2.

b. (Semanticallydisparate): Errorrates ranged from16%to 37.5%on block
1, and from 1%and 6% on block 2. These error rates are depicted by the light
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bars in sets 1 and 3 of Fig. 3. Combining these semantically disparate single
dimension sets errors were 26.56% on block 1 and 3.64% on block 2. Using
the combined data sets and comparing semantically close sets to semantically
disparate sets, no significant differences were obtained for single dimension
sets. Error percentages were not significantly different between semantically
disparate and close sets on block 1 (25.52% vs. 26.56% on block 1, c2 = 0.02,
n.s.) or between close and disparate sets on block 2 (14.58% and 3.64%, c2 =
6.567, n.s.)

3. Identical shape comparison. Finally, the two conjunction sets (semanti-
cally close and disparate) involving theexact same shapes were compared (sets
4 and 5). For the semantically similar set 50% errors were recorded for both
blocks 1 and 2. For the semantically disparate set errors were 25% and 0% for
blocks 1 and 2 respectively. Significant differences between semantically close
and disparate sets were noted for both first block (c2 = 8.0, P < .01) and second
block performance (c2 = 48.0, P < .0001). ELM’s semantically close and dis-
parate conjunction set naming performance for these identical shape sets is
depicted in sets 4 and 5 of Fig. 3.

Discussion
For the normal participant this task was considered trivial. Only once did she
require more than two eight-trial learning blocks to successfully map the four
sounds to the four shapes. Typically she had mapped shapes to sounds after the
first eight learning exposures, resulting inerror-free performance over96 trials.
Inexemplarmodel terms, theability todisambiguateindividual exemplars from
sets of objects having overlapping shape dimensions and semantic attributes
reflects highly specific, narrow, exemplar-node receptive fields. That is, even
objects that are stored close together inmultidimensional space do not typically
generate confusions, because narrow receptive fields associated with these
exemplars do not overlap in healthy observers.

For ELM, who we presume has abnormally wide receptive fields, Experi-
ment 2 provides empirical evidence that in category-specific visual agnosia,
identification difficulties are modulated by both visual shape dimensions and
semantic proximity. For single dimension sets where there are no shared values
among exemplars, the effect of semantic proximity is minimised because ELM
can increase theattentional dimension strengthof the single relevant dimension
and disambiguate exemplars at reasonable levels of proficiency even if these
objects are semantically quite close.

For conjunction sets, however, this gating strategy is ineffective because
multiple dimensions are required for exemplar disambiguation. Thus, conjunc-
tion sets create the potential for recognition difficulties. If objects are psycho-
logically close by virtue of having both shared visual features and semantically
overlapping attributes then profound recognition problems ensue. When, how-
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ever, such exemplars are associated with experiences that are semantically
disparate, this serves to separate these objects within psychological space
enabling performance (0% errors on blob 2) to climb to single dimension set
levels (3.64% errors).

The research of Humphreys et al. (1988) has shown that interactions involv-
ing structural similarity and word frequency can occur. Although no attempt
was  made to  match  disparate and  close sets  expressly in terms of word
frequency, this variable does not seem to bear any relation toELM’s error rates.
For semantically close sets, ELM showed poor performance for both high-fre-
quency (dog, horse, wolf, elephant: mean frequency = 94) and low-frequency
sets (robin, crow, owl, turkey: mean = 3.25). As such the effects of word
frequency, if any, were completely subjugated by the overwhelming effects of
semantic proximity.

Further, it is important to note that the pattern of ELM’s errors cannot be
attributable to practice or fatigue effects, as the order of semantically close and
disparate pairings was counterbalanced. In addition, the semantic effect on
conjunction sets cannot be attributable to differences between the conjunction
sets employed; sets differed only by zero or non-zero values on an irrelevant
dimension (e.g. BEuntapered orBEtapered)and conjunctionsets of bothkinds
were each associated with perfect block 2 performance in the semantically
disparate condition.  Conclusively,  good  performance  for conjunction sets
associated with disparate concepts, and poor performance for sets associated
with semantically close concepts, was noted using exactly the same shape sets.
This latter finding provides the strongest support for a deleterious effect of
semantic proximity on object identification performance in ELM. Holding
shape constant in this fashion is especially important when one considers that
Arguin et al. (1996) found that ELM was preferentially sensitive to certain
dimensions (e.g. changes in elongation appeared to be more salient to ELM
than changes in curvature or tapering).

The error performance of ELM on this blob-identification task replicates the
reaction time performance of ELM in Experiment 6 of Arguin et al. (1996). In
the Arguin et al. study, blobs were given fruit and vegetable labels correspond-
ing to the blob’s form (cucumber, carrot, melon, and pear for the ET unbent set
in Fig. 1). In a second condition the same blobs were given artefact labels that
also bore a resemblance to the blob’s form (cigar, tent-peg, balloon, and
spinning-top). For the conjunction set mapped to semantically disparate labels,
ELM was significantly faster at identifying these blobs than when semantically
close labels were used. The reason Arguin et al. used reaction time rather than
identification performance (as in the current study) was that, unexpectedly,
ELM made very few identification errors even in the fruit and vegetable
condition. Why would ELM be almost error free on the ET unbent set using
fruit and vegetable labels, yet have such difficulty with exactly the same shapes
when using bird-name labels? The answer is that in the present experiment the
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associations between blob-form and bird-label are arbitrary, whereas in Arguin
et al. blob-form corresponded to the shape of these real-world objects. From
theArguin et al. study we know that ELM retains some knowledge of the visual
properties of fruits and vegetables. The problem is that this knowledge is not
exhaustive. Thus, ELM knows that a carrot is long and thin; he just isn’t sure
whether it is tapered or not, or whether it is curved. As such, ELM will confuse
carrots, cucumbers, and bananas, but never confuses carrots with oranges or
pears. Thus, whenidentifying theETunbentsetusing fruitandvegetable labels,
ELM correctly segments this set into thick shapes (melon and pear) and thin
shapes (carrot, and cucumber). It then becomes possible for him to focus, in a
subsequent step, on just a single dimension (in this case, just tapering) to
identify each of the four exemplars correctly. After a few reminder trials, this
subsequent step can be done flawlessly, but it takes time. The key is in the
Arguin et al. study, ELM already knows that a carrot is long and thin (he just
has to focus on the second diagnostic dimension). For the arbitrary blob–bird
label pairings for each shape he must learn to extract values on both elongation
and tapering; a situation that leads to more numerous errors. Unlike these
semantically close sets (birds in the present study, fruits and vegetables in
Arguin et al.), when semantically disparate concepts are applied to the blobs,
ELM extracts values across multiple shape dimensions and is able to identify
these objects in a quick and error-free manner.

Testing the Biological vs. Nonbiological Distinction

Although the preceding data are attributed to the interaction between shape
set dimensionality and semantic proximity, it must be noted in both Arguin et
al., and in Experiment 2 above, all of the semantically disparate sets consist of
nonbiological objects and all the semantically close sets consist of biological
objects. As previously noted, some authors have postulated that biological and
nonbiological objects areeachprocessedby specialisedsubsystems (e.g. Silveri
et al., 1992). We are now in the position to test this assertion directly, without
confounding semantic proximity and object structure.

EXPERIMENT 3
In Experiment 3, we pit the strong version of the biological-nonbiological
hypothesis against the abnormal exemplar-node receptive field hypothesis, by
assessing shape identification ability when shapes are paired with man-made
objects that are semantically close to one another.

For real-world objects ELM shows the classic pattern of category-specific
visual agnosia in which biological objects are impaired and most nonbiological
objects are identified. According to the separate subsystems hypothesis it is
conjectured that there is damage to the biological object recognition system,
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butnottothenonbiological system. If nonbiological objects areprocessedusing
a system that is somehow separate from the damaged system which processes
biological objects, then ELM should not show recognition deficits for a set of
nonbiological objects irrespective of their semantic proximity. If, on the other
hand, both biological and nonbiological objects are processed by the same
object recognition system, and problems arise when objects both share values
on critical shape dimensions and are semantically close, then similar recogni-
tion difficulties would be predicted for biological and man-made objects.

Method

Subject

Testing was conducted only on ELM. The normal participants’ often error-
free performance in Experiments 1 and 2 precluded statistical analysis and
served only to illustrate the ease with which these tasks can be completed by a
healthy participant. (The manner in which object confusions in the memories
of normal participants are affected by semantics can be found in Experiment 6,
following a more complete assessment of ELM’s object identification capabili-
ties.)

Materials

Stimuli. Theshapes in theconjunctionset ETunbentwere randomly paired
with digitised recordings of a banjo, guitar, bass, or violin. (The ET unbent set
was chosen to allow comparisons with his Experiment 2 performance, where
this set was paired with either bird names or unrelated artefact labels.)

In addition shapes in the single dimension set E were randomly paired with
digitised recordings of a banjo, guitar, bass, or violin.

Procedure. The same procedure was used as in Experiment 2.

Results

Conjunction Sets

Error rates for the ET unbent conjunction set were 60.41% for block 1 and
56.25% for block 2. In Experiment 2, which used the same shapes but paired
these blobs to the sounds of a robin, crow, owl, and turkey, ELM had error rates
of 50%on block 1 and 50%on block 2. Again in Experiment 2, thesame shapes
were paired with sounds of a saw, tennis-racquet, photocopier, and helicopter
ELM’s errors were 24.0% on block 1 and 0.0%on block 2.

Performance was not significantly different between the four bird song and
four stringed instrument conditions (c2 = 1.33, n.s.) for block 1 and (c2 = 0.62,
n.s.) for block 2. Performance was significantly poorer for the four stringed
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instruments relative to the four unrelated objects for both block 1 (c2 = 15.00,
P < .001) and block 2 (c2 = 56.00, P < .001) respectively.

Single Dimension Set

Error rates for the E set were 30.00% for block 1 and 18.8% for block 2. In
Experiment 2, which used the single dimension set B paired with robin, crow,
owl, and turkey, ELM had error rates of 13.54% for block 1 and 10.42% on
block 2. Also in Experiment 2, the E set was paired with sounds of a saw,
tennis-racquet, photocopier, and helicopter. For this set ELM’s errors were
16.00% for block 1 and 1.04% for block 2.

Performance was not significantly different between the four bird song and
four stringedinstrument conditions (c2 = 6.22, n.s.) forblock1 and(c2 = 2.403,
n.s.) for block 2. Performance was also not significantly different between the
fourstringedinstruments andthe unrelatedartefactsoundonblock1 (c2 = 4.26,
n.s.) but was significantly different on block 2 (18.8% vs. 1.04%; c2 = 15.89,
P < .01). Conjunction and single dimension set performance for unrelated
artefacts, birds, and stringed instruments are presented in Fig. 4.

Discussion
When shapes sharing values on critical shape dimensions are paired with
experiences designed to elicit semantically similar object labels, recognition
deficits occur in ELM. When exactly the same shapes are paired with experi-
ences designed to elicit semantically disparate labels, however, identification
performance improved dramatically. The finding that both biological and
nonbiological object labels yield this pattern of results contradicts the notion
of two separate object recognition systems subserving biological and nonbi-
ological objects. Rather, this pattern favours a single object recognition system
in which the interaction between multidimensional shape sets and semantic
similarity conspires to create recognition problems for category-specific ag-
nosic patients like ELM.

Once again, care was taken to ensure that ELM could distinguish flawlessly
among thesound recordings from sameand differentcategories prior totesting.
It could still be argued, however, that the semantically close sounds were all
produced using essentially the same mechanisms (vibrating strings, or the
throats of birds or animals), whereas for semantically disparate experiences,
sounds were produced in different ways (e.g. the scanner in the photocopier,
andthe rotating blade of thehelicopter). Thus, itcouldbe arguedthatthepattern
of obtained results has nothing to do with the semantic proximity of the labels
elicited by the sounds but is entirely due to the greater acoustic similarity of
semantically similar sounds. That is, ELM had aharder time mapping the sound
of a guitar or bass than sounds of a photocopier and helicopter to blobs, not
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FIG. 4. ELM’s block1 and2 errorpercentages forsingledimensionandconjunctionsets whenshapes
werepairedwithsemanticallydisparateconceptsorwithsemanticallycloseconcepts belongingtoeither
biological or nonbiological categories (Experiment 3).
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because the stringed instruments are semantically closer, but merely because
their sounds were more similar.

Such an argument might be considered untenable given that ELM identified
the sounds flawlessly in pretesting. A different potential source of concern,
however, is that for certain categories of sounds there is more than one way to
differentiate between members of a given set. Pilot testing revealed,  for
example, that the digitised recordings of a car, bus, truck, and train (four
vehicles) were primarily distinguishedby hearing thegears changing inthecar,
the opening and closing of the bus door, the hydraulic brakes of the truck, and
the whistle of the train. Thus, for certain sets, semantically close labels (car,
bus, truck, and train) could have been derived from semantically disparate
labels: gears, door, brakes, and whistle.

The simplest means of circumventing both of these potential artefacts is
by dispensing with sounds and simply pairing shapes directly with verbal
labels. Although originally it was thought that having ELM generate labels
based on sound experiences might enable him to encode and remember the
verbal labels better, according to Estes (1994), simply storing the categorical
label itself in thememory array ensures that all of theaccompanying categorical
attributes will also be stored, and contribute to the overall similarity between
exemplars.

EXPERIMENT 4
In Experiment 4, exemplars from single dimension and conjunction sets will
be paired with verbal labels instead of digitised sound recordings. This allows
us to retest the biological vs. nonbiological distinction against the exemplar-
node receptive field deficit hypothesis in an even more rigorous fashion. In
Experiment 4, names of man-made artefacts that are close in semantic proxim-
ity, and names of biological concepts that are semantically disparate, were
mapped to single dimension and conjunction shape sets. If the biological vs.
nonbiological distinction is thecrucial factorinCSVA, thenconjunctionshapes
paired with biological objects will not be identified, and conjunction shapes
paired with artefacts will be identified, irrespective of the semantic distance
between the concepts associated with the shapes. If, on the other hand, the
receptive field deficit hypothesis is correct, then the biological vs. nonbiologi-
cal dimension should be irrelevant. As long as shape sets share multiple
diagnostic shape dimensions and bear labels that are semantically related,
identification problems are predicted to ensue.

Materials and Methods

Stimuli. The following sets were used:
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1.  The semantically disparate words “shark”, “rose”, “apple”, “humming-
bird” were paired with conjunction set (BE tapered), and single dimen-
sion set B.

2.  The semantically close words “hammer”, “saw”, “wrench”, and “screw-
driver” were paired with the conjunction set (BEnot tapered) and single
dimension set B.

3. The semantically disparate words “plate”, “door”, “stapler”, “kite” were
paired with the conjunction set (ET bent) and single dimension set T.

4.  The semantically close words “mustang”, “corvette”, “jeep”, and “cadil-
lac” were paired with the conjunction set (ET bent)and single dimension
set T, which are the same shapes as SET 3.

Procedure. The same procedure was used as in Experiment 3. The only
exception was that digitised recordings of object sounds (e.g. sound of a saw
cutting wood) were replaced by digitised recordings of thespoken verbal labels
(e.g. the word “saw”).

Results
1. Conjunction sets
a. (Semantically disparate): For conjunction sets with semantically dispa-

rate labels, error rates ranged from 18%to 41%on block 1, and from 0%to 3%
on block 2. These results are depicted by the dark bars in sets 1 and 3 of Fig.
5. Combining the semantically disparate sets, error rates were 29.2% on block
1 and 1.5%on block 2.

b. (Semantically close): Error rates ranged from 70%to 71%on block 1 and
66% to 21% on block 2. These sets are depicted by the dark bars in sets 2 and
4 of Fig. 5. Combining results from the two semantically close sets error rates
were 70.3% on block 1 and 43.23% on block 2.

Using the combined data sets and comparing semantically close and dispa-
rate sets, the semantically close sets led to significantly higher error rates on
both block 1 (70.3% vs. 29.17%, c2 = 32.67, P < .001), and block 2 (43.23%
and 1.50%, c2 = 74.41, P < .0001).

2. Single dimension sets
a. (Semantically disparate): For single dimension sets with semantically

disparate labels, error rates ranged from 8.33%to 21.88%on block 1, and from
10.41% to 15.62% on block 2. These error rates are depicted by the light bars
in sets 1 and 3 of Fig. 5. Combining these semantically disparate single
dimension sets, errors were 29/192 (15.10%) on block 1 and 25/192 (13.02%)
on block 2.

b. (Semantically close): Error rates ranged from 21.89% to 20.83% on the
first block of 96 trials and between 10.41%and 16.67%on the second block of
96 test trials. These error rates are depicted by the white bars in sets 2 and 4 of

INTERACTION OF OBJECT FORM AND MEANING 1113



Fig. 5. Combining these semantically similar single dimension sets, error rates
were 21.35% on block 1 and 13.54% on block 2.

Using the combined data sets and comparing semantically close set, to
semantically disparate sets, no significant differences were obtained for single
dimension sets. Error rates were not significantly different between semanti-
cally disparate and close sets on block 1 (15.10% vs. 21.35%; c2 = 1.07, n.s.)
or between disparate and close sets on block 2 performance (13.02% and
13.54%, c2 = 0.01, n.s.)

3. Identical shapes comparison. Acomparison of sets 3 and 4, in which the
same conjunction shapes were used for both semantically similar and disparate
concepts, revealed equivalent performance after the first block (40.63%dispa-
rate errors vs. 31.2%close errors, c2 = 1.24, n.s.) but significantly fewer errors
for thedisparateset for the secondblock(3.1%vs. 25%close errors, c2 = 16.33,
P < .01).

ELM’s single dimension and conjunction set performance for identical
shapes associated with verbal labels of semantically close and disparate prox-
imity are presented in sets 3 and 4 of Fig. 5.

Discussion
Experiment 4 replicates and extends the findings of Experiments 2 and 3. It
rules out the possibility that the pattern of results produced by these previous
experiments was attributable to an artefact involving sound–shape pairings in
which semantically similar sounds were more acoustically similar than seman-
tically unrelated sounds. Using verbal labels, where acoustic similarity is not
an issue, ELM once again displayed profound recognition difficulties only
when conjunction sets were paired with semantically similar concepts.

Once again, the biological-nonbiological distinction does not appear to be
the relevant variable in these experiments, as ELM has no problem recognising
a conjunction set of blobs mapped to four biological concepts (shark, rose,
apple, and hummingbird) that are semantically disparate, but has a great deal
of difficulty identifying a conjunction set of blobs mapped to nonbiological
concepts (corvette, mustang, cadillac, and jeep) that are semantically similar.

As in Experiments 2 and 3, the powerful effect of semantic proximity is
underscored by this pattern of results occurring even when the same shapes
serve for semantically close and semantically disparate sets. By using theexact
same shapes, the visual structure of objects within a set is held constant while
semantic proximity is independently modified—a situation that provides the
most rigorous test of the shared feature by semantic proximity interaction
hypothesis. Like Experiments 2 and 3, by the end of the second block perform-
ance was nearly flawless for the semantically disparate conjunction sets, but
was still quitepoorwhenthese same shapes werepairedwithsemantically close
concepts.
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Thus far, we have sampled sets of shapes associated with semantic labels
that were dichotomously either semantically close or disparate. Exemplar
models such as our variant of ALCOVE propose that objects are stored in
multidimensional space at coordinates based on visual and semantic dimen-
sions. In such a psychological space the proximity between two objects will
depend on the number of overlapping visual and semantic attributes shared by
these objects. Since the number of shared attributes can be considered a
continuous, as opposed to a dichotomous, variable, it is of interest to compare
categories that intuitively vary in the number of overlapping attributes. Thus,
although car, bus, truck, and train present some degree of attribute overlap, one
can guess that these categories are not as semantically close as four types of car
(e.g. mustang, corvette, jeep, and cadillac), which in turn are less semantically
proximate than four sports cars (e.g. mustang, corvette, trans am, and camaro).

FIG. 5. ELM’s block1 and2 errorpercentages for singledimensionandconjunctionsets whenshapes
were paired with semanticallyclose ordisparateconcepts evokedthroughverbal labels (Experiment4).
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EXPERIMENT 5
Experiment 5 tested ELM’s conjunction and single dimension shape identifi-
cation performance across a range of intuitively derived semantic proximities.
These new sets were combined with the previously acquired data from experi-
ments  2  through 4.  Semantic  proximity ratings were then gathered from
normals, and these empirically derived proximities were used to formally
measure the association between ELM’s semantic proximity and conjunction
set performance.

Method

Subjects

ELM participated in the shape identification paradigm. For the semantic
rankings normal participants were recruited. These participants were 31 uni-
versity students enrolled in a third-year cognition course at the University of
Victoria. Participants participated in the study in fulfilment of a course require-
ment.

Materials

Shape identification stimuli. The following word quadruplets were paired
with the following conjunction and single dimension sets:

1.  The words “hummingbird”, “lion”, “wasp”, and “frog” were paired with
the conjunction set (BT elongated), and single dimension set E.

2.  The words “submarine”, “metro”, “airplane”, and “bus” were also paired
with the conjunction set (BT elongated) and single dimension set E.

3.  The words “corvette”, “trans am”, “mustang”, and “camaro” were paired
with the conjunction set (BT not elongated) and single dimension set T.

4.  The words “robin”, “crow”, “cardinal”, and “bluejay” were also paired
with the conjunction set (BT not elongated) and single dimension set T.

5.  The words “cup”, “bowl”, “glass”, “vase” were paired with the conjunc-
tion set (BE tapered) and single dimension set B.

6.  The words “car”, “bus”, “truck”, and “train”, were paired with the
conjunction set (BE tapered) and single dimension set E.

Procedure. The same procedure as in Experiment 4 was used to test ELM.

Semantic rankings from normals. Participants were given the 15 sets of
concepts depicted in Table 1. The 15 quadruplets were presented in random
order and participants were instructed to read all 15 quadruplets and then to
rank order them in terms of how similar the members within the quadruplets
were. Rankings were to be ordered from least similar = 1 to most similar = 15.
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The following quadruplets were given as examples: “If the word quadruplet
was (daisy, rose, chrysanthemum, and tulip) it should get a “high” (near 15)
ranking since these are all flowers, all grow in Canadian gardens, all have long
stems, all have green stems, petals, etc.”

“On the other hand if the quadruplet was (building, fig leaf, computer,
needle) this quadruplet wouldget a low number(close to1) because these items
more or less have nothing to do with one another.”

Participants were then instructed to “. . . use everything you know about the
items when deciding on the rankings (what the items look like, what the items
do, what the items are used for, etc.)”

Finally, participants were advised to ensure that they only had one ranking
per quadruplet andthat they hadas rankings thenumbers 1 to15 inclusive when
they were finished.

Results
Despite explicit instructions, three normal participants reversed theorder of the
rankings (gave low rankings to semantically similar items, and high rankings
to disparate items). These data were removed from further analysis.

Data from the remaining 28 participants were used to compute semantic
proximity values for each of the 15 quadruplets. These values were the means
of the 28 rankings obtained for each quadruplet.

ELM’s conjunction and single dimension shape set identification perform-
ance, along with semantic proximity values obtained from normals for each
word quadruplet, are given in Table 1. For comparison with previous experi-
ments, both total error rates and block 2 error rates are given in this table.

The correlation between semantic proximity values and ELM’s shape iden-
tification performance was significant and strong for both total (r = .81, P <
.01) andblock2 performance (r = .84, P < .01). Associations betweensemantic
proximity values and single dimension set performance were negligible (r =
.21, n.s., and r = .06, n.s. for total and block 2 error rates, respectively). The
relationship between normal semantic rankings and ELM’s block 2 perform-
ance is depicted in Fig. 6.

Finally, the quadruplets’ mean word frequencies (Kucera & Francis, 1967)
did not correlate with either total conjunction set error performance (r = .016,
n.s.) or block 2 performance (r = – .13, n.s.)

Discussion
Experiment 5 replicates and extends the findings of Experiments 2 through 4
using a larger data set and more powerful parametric statistics. Before expand-
ing on these findings we will dispense with some criticisms that could be
brought to bear on this experiment.
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First, we combined  quadruplets  from  experiments that used sounds to
portray concepts with quadruplets using verbal labels to portray concepts.
Although undesirable, the alternative would be to retest ELM on all of these
quadruplets using labels. Rather than trying ELM’s (Herculean) patience, we
chose to combine the two types of quadrants and accept the fact that different
procedures could potentially contribute to unexplained variance, which could
reduce the correlation between semantic proximity ratings and ELM’s identi-
fication performance.

Second, although we controlledfor thesemantic proximity of theblob labels,
we did not control for whether the real-world objects denoted by these labels
were recognisable to ELM. Thus, it could be postulated that ELM only has
trouble with conjunction sets of blobs with labels denoting objects that were
unrecognisable for him. The conjunction set labeled with bowl, cup, glass, and
vasedispenses withthis notion. Despitehis ability torecognise thesereal-world
objects, his overall conjunction set performance on this set was the poorest
(66%block 2 errors) of the15 quadruplets tested. This contrasts with his nearly
flawless performance (3.1% block 2 errors) on a conjunction set using kite,
plate, stapler, door—four objects that he also can recognise. These vast per-
formance differences suggest that whether or not he can recognise the objects
denoted by the labels we attached to the blobs is of little importance to his
blob-identification performance.

Finally we did not control for whether object labels consisted of base-level
orsubordinate-level terms. Indeed, certainsubordinate-level terms werechosen

FIG. 6. ELM’s block 2 error rates for single dimensionand conjunctionsets as a functionof semantic
proximity. Date are presentedfor ELM’s block 2 errors (Experiment5). The flat line of best fit reflects
the minimal correlation betweensemantic proximity and single dimensionsets. The sloped line of best
fit, andclose proximity of conjunction set points to this line, reflect the substantial correlationbetween
semantic proximity and conjunction set performance.
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especially for their semantic relatedness (e.g. mustang, camaro, trans am, and
corvette). It is likely, however, that conjunction set performance was deter-
mined by the semantic proximity of these objects rather than by whether they
were base-level or subordinate entities. ELM does equally poorly for semanti-
cally related base-level terms (bowl, cup, glass, vase = 66%block 2 errors) as
he does for semantically related subordinate-level terms (mustang, camaro,
trans am, corvette = 66%block 2 errors).

What is shown conclusively in Experiment 5 is that ELM’s blob identifica-
tiondepends on both thedimensionality of the shape sets used and the semantic
proximity of the concepts to which these blobs were associated. Experiment 5
once again demonstrated that for single dimension sets, ELM can disambiguate
exemplars by gating irrelevant dimensions and increasing the attentional di-
mension strengths of single relevant dimensions. For these sets the effect of
semantic proximity is minimal: four sports-car blobs are identified as easily as
four blobs mapped to unrelated members of the animal kingdom (wasp, lion,
hummingbird, frog).

It can be assumed that ELM’s ability to distinguish items from shape sets
varying along a single dimension transcends the confines of the laboratory. In
real life ELM does not confuse cup, bowl, glass, and vase despite their intuitive
semantic closeness. This is possibly because in real lifeELM has optimised his
ability to differentiate these exemplars by increasing the attentional dimension
strength for elongation (a vase is taller than a glass, which is taller than a cup,
which is taller than a bowl). Importantly, in the computer-generated shape
paradigm, ELM can be made to confuse these semantically proximate entities
if they are artificially forced to form a conjunction set rather than a single
dimension set.

Unlike single dimension sets, when members within a set share values on
critical shape dimensions, semantic proximity becomes a reliable and robust
determinant of identification performance. By showing strong, significant
correlations between semantic proximity values and conjunction set perform-
ance, Experiment 5 extends the findings of previous experiments by showing
that it is not just the presence or absence of semantic proximity, but rather the
degree of proximity, which is crucial to ELM’s shape identification. Thus,
although four vehicles (car, bus, truck, and train) pose some problems for ELM
because they are somewhat proximate, very close semantic sets such as four
birds, four stringed instruments, or four sports cars significantly exacerbate
ELM’s identification problems.

EXPERIMENT 6
In the experiments presented thus far two fundamental assumptions have been
made. Thefirst is thatELMhas exemplarnodes withabnormally wide receptive
fields. This causes recognition problems only for certain classes of objects
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because of the second fundamental assumption—namely that the manner in
which we store objects in memory is based on psychological as opposed to just
visual distance. According to this principle, the more visually and semantically
similar  two objects are,  the  greater is  their  psychological  similarity, and
(because of abnormally large receptive fields) the more likely it is that ELM
will confuse them.

Experiments 1–5 support the contention the ELM’s object identification
errors  are constrained by this psychological distance principle. It should,
however, be theoretically possible to use the ELM paradigm to demonstrate
that healthy adults (with presumably normal-sized receptive fields) also store
objects according to this psychological distance principle. To achieve this, one
must show that normals, like ELM, make more object confusions when blobs
are labeled using semantically close concepts than they make when the same
blobs are associated with semantically disparate concepts. The nearly flawless
performance  of  the healthy participant in Experiments 2–3  indicates  that
mapping four sounds or labels to four shapes runs the risk of generating ceiling
effects. Thus, in testing normals, set size was increased to six blobs and six
labels in  the  hope  of  generating enough  object  confusions to  enable  the
ramifications of the psychological distance principle to emerge. In order to
maximise theeffects of semantic proximity, in the semantically close condition
participants were askedtomapbirdnames toblobs. Birds areoneof thevisually
similar and semantically similar sets of objects known to man. In the unrelated
condition exemplars were  chosen  from six  completely different semantic
categories (insect, amphibian, mammal, tool, instrument, vehicle).

It was predicted that blob-labeling errors would increase significantly when
related labels replaced semantically unrelated labels in the blob-labeling task.
However, this effect of semantic proximity was predicted to be smaller than
that noted for ELM, who should show more pronounced differences between
the semantically related and unrelated conditions because of abnormally wide
receptive fields. (Unfortunately, generating six exemplars varying along a
single dimension caused exemplars to be too close perceptually to be useable
in this paradigm. A plethora of research suggests, however, that single dimen-
sion sets are classified better than sets of objects defined by multiple visual
dimensions: see Kruschke, 1992, for a review.)

Method

Subjects

Eighteen elderly participants were tested. Of these, four were unable to
perform above chance on either condition and were excluded from further
analyses. The 14 remaining participants were somewhat older than ELM,
ranging in age from 66 to 95 years old (mean age = 79.84 years). Participants
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were all living independently, mentally healthy, with no subjective memory
complaints.

Materials

Shape stimuli. Six of the eight blobs used to form conjunction sets were
employed. These were therightmost blobs from the elongated and unelongated
BT sets of Fig. 1 (i.e. the BT sets excluding the cigar-shaped and watermelon-
shaped blobs). In terms of visual similarity each of the six blobs within this set
shared two features with at least one other exemplar.

Labels. The following sets of labels, matched for word frequency, were
applied to the six shapes:

1.  The words “robin”, “sparrow”, “crow”, “cardinal”, “bluejay”, “swallow”
were paired with the conjunction set described earlier.

2.  The words “frog”, “tiger”, “wasp”, “carriage”, “wrench”, “banjo” were
paired to these same blobs.

Procedure

Learning trials. On learning trials one of the six shapes were presented for
1000msec along with its acoustically presented name. Following a 1000msec
interstimulus interval, a second shape was presented for 1000msec accompa-
nied by its name. Six such learning trials were presented with each shape–name
combination presented once.

Test trials. Following six learning trials, six test trials were presented
where shapes were unaccompanied by their names. Participants attempted to
give the names associated with the shapes. The pattern of 6 learning and 6 test
trials was repeated12 times fora total of 72 learning andtest trials. The relevant
data are the number of errors made over 72 test trials.

Participants were tested on separatesessions conducted at leasta week apart.
Session order was counterbalanced across participants.

Results
Semantically close error rates were significantly higher (mean = 53.5%) than
theerror rates for theunrelated labels (mean = 36.8%) [dependent t(12) = 3.40,
P < .01].

Forthe blobquadruplets mappedtobird names ELM’s total errorpercentage
was 60.94%. For quadruplets mapped to unrelated (both biological and nonbi-
ological) labels the best estimate of ELM’s error rate is 13.75%. This value
came from thepercentage of errors ELM made on the five quadruplets with the
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lowest semantic proximity rankings (the five quadruplets at the top of Table
1)4.

Atwo by two chi-square analysis of error percentages by ELM and normals
for the semantically close and disparate conditions indicates significantly
greater effects of semantic proximity (60.94% close vs. 13.75% disparate) for
ELM than for healthy participants (53.5%close vs. 36.8%disparate errors) (c2

= 9.86, P < .01).
For the semantically close condition, healthy participants (53.5% errors)

performed similarly to ELM (60.94%errors), (c2 = 0.481, n.s.) For the seman-
tically disparate conditions, ELM’s performance (13.75% errors) was signifi-
cantly better than that of normals (36.8% errors) (c2 = 10.82, P < .001).

Discussion
The performance of healthy participants in a more difficult version of the ELM
paradigm provides evidence that objects are retrieved from memory according
to a psychological distance principle. Objects that share only visual attributes
are further apart in psychological space and are less confusable than objects
that are stored close together by virtue of sharing both visual and semantic
attributes. Nevertheless, normals do not show nearly as marked a discrepancy
between the semantically close and disparate label conditions as ELM did.

In this experiment normal performance was moved away from ceiling by
assessing their ability to attach six blobs to six labels. For shapes mapped to
semantically disparate labels, this increase in set size caused normals to make
significantly more errors than ELM. For exactly the same shapes mapped to
semantically close labels, however, ELM’s performance with four blobs rose
to levels that were ordinally (albeit not statistically) higher than normals’ error
rates with six blobs. ELM’s poorer performance, despite using a smaller set
size, is consistent withthenotionthathehas preferential difficulties disambigu-
ating objects that share visual and semantic properties.

GENERAL DISCUSSION
The utility of the shape labeling task in understanding object recognition
depends on its relationship to veridical object recognition. We propose that in
their most important aspects, the two processes are analogous. In the versions
of the ELM paradigm used in Experiments 4–6, on learning trials a blob was

4
This is a conservative estimate. The condition that ELM completed which was most compa-

rable to the control subjects’ unrelated conditionwas that using labels of an animal, an amphibian,
a bird, and an insect mapped to the BT elongated shapes. In this condition ELM made only 2.5%
total errors.
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accompanied by an auditorially presented name which automatically makes
contact with semantic representations corresponding to that name. In order to
succeed ontest trials subjects must somehow learntomap the shapetothename
that accompanied it on learning trials. To do this they may either go directly
from the form of the blob to phonology (the blob’s “name”), or along a route
that travels through semantics. ELM’s strong effect of semantic proximity
suggests that the pathway taken runs through semantics.

Thus, the blobs in the ELM paradigm can be thought of as descriptions in
shape space, just like the form of real objects. Like real objects, these points in
shape space make contact with relevant points in semantic space, which in turn
make contact with phonology. These mappings probably all take place in
cascade fashion (Humphreys et al., 1988). The central difference between
veridical object recognition and recognition in the ELM paradigm, therefore,
is that in veridical object recognition these mappings between form, semantics,
and phonology already exist, whereas in the ELM paradigm these mappings
must be instantiated.

Where this paradigm excels in relation to veridical object recognition or
confrontation naming of standardised line drawings is in its ability to decouple
object form from object meaning. By having exactly the same shapes standing
for both semantically close and disparate objects one can assess directly the
ramifications of semantic proximity on object recognition unconfounded by
visual proximity. By applying the same labels to visually similar or visually
distinct blob sets, for the first time in Neuropsychology one can directly assess
the ramifications of visual proximity unconfounded by semantic proximity.
With ELM we showed that for sets of objects sharing values on multiple shape
dimensions, performance depended completely on semantic proximity. For
semantically close labels, performance was poor; for semantically disparate
items mapped to exactly the same shapes, performance was near ceiling. In
addition, we repeatedly showed that thebiological vs. nonbiological distinction
is of minimal importance relative to the pairing of visually similar shapes with
semantically similar concepts.

Thus, the present series of experiments provides the first full empirical
evidence that the identification problems in at least some forms of category-
specific visual agnosia can result from an interaction between the shape set
dimensionality and semantic proximity of the objects being identified. This
interaction can be interpreted within the context of an exemplar model of
categorisation and identification that makes three fundamental assumptions.
Thefirst is thatELM has exemplarnodes withabnormally widereceptivefields.
The second assumption is that psychologically similar objects are stored close
together in multidimensional psychological space. The third assumption is that
psychological distance is derived from  both visual features and semantic
features. Together these assumptions demonstrate why ELM shows
CSVA—the abnormally wide receptive fields of contiguously stored objects
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will overlapmaking visually similarand semantically similarobjects extremely
difficult to recognise. An important exception to this general principle involves
sets of objects in which the exemplars differ along a single shape dimension.
In this case ELM can compensate for abnormally wide receptive fields by
optimising the dimensional attention strength associated with these single
relevant dimensions.

This psychological distance view of category-specific agnosiacontrasts with
other models. Of these, one of the most influential is that proposed by War-
rington and colleagues (Warrington & McCarthy, 1987, 1994; Warrington &
Shallice, 1984). They postulate that semantics is parsed into knowledge con-
cerning sensory properties (e.g. what the object looks like) and knowledge
concerning function (what the object does). If the knowledge of sensory
properties becomes damaged, biological objects become unrecognisable be-
cause discrimination among exemplars relies primarily on visual features.
Artefacts can still be recognised because patients retain knowledge of their
often unique functions. Thus, category-specificity has nothing to do with
biological category membership per se, but rather, whether or not an object can
reliably be identified according to its functions.

Recent evidence from PET studies of healthy individuals at least partially
supports this view. Martin, Wiggs, Ungerleider, and Haxby (1996) used sub-
tractionmethodology toshow that identifying animals draws uponventral areas
of the temporal lobes as well as the primary visual cortex. Such preferential
visual cortical activation for animals but not tools was interpreted as a re-con-
sultation of the animal’s fine-grained visual features in order to arrive at
base-level identification. When subjects identify tools, temporal lobe activation
is accompanied by activation in the frontal lobes. Martin et al. attributed such
frontal activity to activation of the cortical areas responsible for encoding
knowledge about object function. Thus, as Warrington et al. suggest, the
disambiguation of living things relies primarily on visual features, whereas the
disambiguation of objects like tools involves their function.

Because ELM has identification problems primarily with living things,
Warrington et al. would assume damage to his sensory knowledge subsystem,
but intact knowledge concerning the functions of objects. This would allow
ELM to recognise things like tools in everyday life. In the blob-labeling
paradigm ELM had fewer problems learning to pair single dimension shapes
to tool names (16.67% errors) than conjunction shapes (45.83% errors). War-
rington et al. might argue that forcing ELM to disambiguate exemplars sharing
multiple visual features draws upon his damaged sensory knowledge system
andleads tonumerous errors. Warringtonetal. might also note that conjunction
set errors for shapes with tool labels (20.83%block 2 errors) were substantially
less than conjunction set errors for shapes with bird labels (52.08% block 2
errors)—a finding consistent with the notion that the unique functions associ-
ated with tools aids in their identification. Where Warrington and colleagues’
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theory encounters problems is explaining why ELM made no errors in block
2 on conjunction sets labeled using “shark”, “rose”, “apple”, and “humming-
bird” or “lion”, “wasp”, “frog”, and “hummingbird”—biological objects that,
likebirds, havenouniquefunctions forman. Takentogether, onemustconclude
that for ELM, therole of functional knowledge of objects may serve to increase
semantic distance somewhat but it cannot account entirely for his different
patterns of performance forsingle and conjunctionsets of objects. The errorless
performance of ELM for conjunction sets labeled using functionless biological
objects indicates that semantic distance plays a more crucial role than object
function in determining object identification performance.

Another difficulty in assuming that artefacts can be recognised by their
functions involves the problematic category of musical instruments. A guitar
has a salient function for man. If objects can be recognised by their functions,
why, then, should objects like a guitar pose identification problems for patients
who otherwise have difficulties predominantly with biological objects. The
answer once again involves psychological distance. If nonbiological objects
like tools (e.g. saw and hammer) have different functions, this would serve to
increase the semantic distance between the exemplars comprising these cate-
gories, thereby making these objects easier to recognise. For objects like a
guitar, however, their function is quite similar to other exemplars within the
subcategory of stringed musical instruments. Violin, guitar, and banjo all have
similar forms, similar functions, and (at least concerning the left hand) require
similar kinesthetic movements. This overlapping of structural, functional and
kinesthetic attributes may lessen semantic distance and lead to recognition
problems for these items.

It should be noted, however, thatour exemplar-node receptivefieldhypothe-
sis cannot account for all forms of category-specific agnosia. It cannot account
for the less common form of CSVAin which patients show recognition deficits
forman-made artefacts but a sparing of biological objects (Hillis & Caramazza,
1991; Sacchett & Humphreys, 1992; Warrington & McCarthy, 1983, 1987).

Forpatients whoshow themore prevalentpatternof category-specific visual
agnosia (recognition problems with biological categories and a sparing of
artefacts), a deficit that leads to a strong interaction between semantics and
shape set dimensionality must send a cautionary note toresearchers who would
look exclusively to the level of semantics for an explanation of this form of
CSVA. These findings would suggest that extreme care be taken in ruling out
shape processing deficits before attributing the cause of CSVA solely to a
semantic deficit in a given patient. As has repeatedly been shown in Experi-
ments 2–5, shape processing deficits can interact with semantics in spectacular
fashion.

The shape identification performance of ELM also has implications for
general theories of object recognition. It provides clear evidence that semantics
can modulate shape identification. Thus, for exemplar models like ALCOVE,
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semantic must be involved in determining the position of the hidden exemplar
nodes in multidimensional psychological space. Although the purpose of this
study was not to provide a fully specified model capable of object recognition,
it does suggest that at least two key elements must be present in such a model
if it is to account for ELM’s identification performance. First, some form of
dimensional gating mechanism like that in ALCOVE is necessary to account
for ELM’s performance differences between single dimension and conjunction
shape sets. Second, a mechanism that allows both semantics and structural
factors to enter into the calculation of exemplar similarity must be present in
order toaccountforsemantics modulating ELM’s conjunctionset identification
performance.

ELM’s propensity to confuse objects that are both visually and semantically
similar is somewhat reminiscent of the “mixed” visual and semantic reading
errors (e.g. reading “rat” as “cat”) made by patients with deep dyslexia (Hinton
& Shallice, 1991). In simulations of many (but not all) connectionist configu-
rations, mixed errors are a prevalent form of deep dyslexic reading errors, and
can arise from damage to a number of different model components (Hinton &
Shallice, 1991; Plaut & Shallice, 1993).

For object identification, there may be an even greater propensity to confuse
items thatarevisually andsemantically related. This is becauseinreading, word
form is only arbitrarily related to semantics (the word “CAT” does not look like
the four-legged feline), and large attractor basins are proposed to overcome the
problems distributed architectures have in mapping visually similar inputs
(CAT, MAT)todisparatepatterns of activations insemantic space. Forvisually
presented objects, on the other hand, visually similar forms are often also
semantically similar (e.g. the shapes of a robin and a crow are similar, as are
their meanings). Distributed architectures require less learning and smaller
connection strengths to map visually similar inputs to highly similar, but still
discernibly different, patterns of activation in semantic space (Plaut &Shallice,
1992). As in deep dyslexia, however, a consequence of storing object repre-
sentations in this distributed fashion would be that damage to this architecture
would be likely to result in the propensity to confuse objects that are both
visually and semantically related. Thus, whether accounting for the word
reading errors of deep dyslexic patients, or object recognition problems of
temporal lobe patients like ELM, if one assumes that knowledge is stored in a
distributed architecture, then confusions among entities that are both visually
and semantically similar are to be expected when this architecture becomes
damaged.

Irrespective of cognitive neuropsychologists’ view of whether object iden-
tification is best explained using exemplar models or more distributed archi-
tectures, the paradigm employed in these experiments offers an unprecedented
ability to look directly at the influence of semantic relationships in category-
specific visual agnosia. By allowing the same shapes to stand for concepts that
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differed in semantic proximity we have effectively held the structure of the
objects constant, while independently manipulating their semantic properties.
Using this paradigm we have repeatedly shown that shape identification in the
category-specific visual agnosic patient ELM depends on the interaction of
visual feature overlap and semantic proximity.

It can be postulated that in real life, most man-made objects are either
visually dissimilar and hence pose no problems, or category members can be
differentiated from one another using a single shape dimension (like bowl, cup,
glass, and vase). Finally, nonbiological objects may pose fewer problems than
biological objects because they have specific and often unique functions; a
situation that might serve to increase the semantic distance between members
of nonbiological categories. Exceptions are categories like makes of car and
musical instruments, which have similar functions and pose problems for ELM
and other category-specific agnosics because they probably require more than
one crucial shape dimension for their disambiguation.

Unlike man-made artefacts, biological objects not only share a large number
of semantic features, but also share a large number of visual features (all
animals have heads, necks, trunks, and legs). Thus objects like fruits, vegeta-
bles, animals, birds, and insects pose the deadly combination of semantic
proximity and shared values along critical shape dimensions, which precludes
object recognition in at least some forms of category-specific visual agnosia.

Manuscript received 22 November 1996
Revised manuscript received 13 November 1997

Manuscript accepted 22 December 1997

REFERENCES
Arguin, M., Bub, D.N., & Dudek, G. (1996).  Shape integration for visual object recognition and

its implication in category-specific visual agnosia. Visual Cognition, 3, 221–275.
Basso, A., Capitani, E., & Laiacona, M. (1988).  Progressive language impairment without

dementia: A case with isolated category-specific semantic defect. Journal of Neurology,
Neurosurgery, and Psychiatry, 51, 1201–1207.

Damasio, A.R.  (1990).  Category-related recognition defects as a clue to the neural substrates of
knowledge. Trends in Neuroscience, 13, 95–98.

Estes, W.K. (1994). Classification and cognition. Oxford: Oxford University Press.
Etcoff, N.L., Freeman, R., & Cave, K.R. (1991).  Can we lose memories of faces? Content

specificity and awareness in a prosopagnosic. Journal of Cognitive Neuroscience, 3, 25–41.
Farah, M.J., Hammond, K.M., Mehta, Z., & Ratcliff, G. (1989).  Category-specificity and mo-

dality-specificity in semantic memory. Neuropsychologia, 27, 193–200.
Farah, M.J., & McClelland, J.L. (1991).  A computational model of semantic memory impair-

ment: Modality-specificity and emergent category-specificity. Journal of Experimental Psy-
chology: General, 120, 339–357.

Farah, M.J., McMullen, P.A., & Meyer, M.M. (1991).  Can recognition of living things be
selectively impaired? Neuropsychologia, 29, 185–193.

Farah, M.J., & Wallace, M.A. (1992).  Semantically boundedanomia: implications for theneural
implementation of naming. Neuropsychologia, 30, 609–621.

1128 DIXON, BUB, ARGUIN

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1350-6285^28^293L.221[aid=295926,cw=1]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3050^28^2951L.1201[aid=295426,nlm=2465388]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0166-2236^28^2913L.95[aid=295927,csa=0166-2236^26vol=13^26iss=3^26firstpage=95,nlm=1691878]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0898-929X^28^293L.25[aid=293931,mcbca=0]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-3932^28^2927L.193[aid=295928,csa=0028-3932^26vol=27^26iss=2^26firstpage=193,nlm=2927629]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-3445^28^29120L.339[aid=295300,csa=0096-3445^26vol=120^26iss=4^26firstpage=339,nlm=1837294]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-3932^28^2929L.185[aid=295477,csa=0028-3932^26vol=29^26iss=2^26firstpage=185,nlm=2027434]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-3932^28^2930L.609[aid=295929,csa=0028-3932^26vol=30^26iss=7^26firstpage=609,nlm=1528409]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3050^28^2951L.1201[aid=295426,nlm=2465388]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-3445^28^29120L.339[aid=295300,csa=0096-3445^26vol=120^26iss=4^26firstpage=339,nlm=1837294]


Hart, J., & Gordon, B. (1992).  Neural subsystems for object knowledge. Nature, 359, 60–64.
Hillis, A.E., & Caramazza, A. (1991).  Category-specific naming and comprehension impair-

ment: A double-dissociation. Brain, 114, 2081–2094.
Hinton, G.E., & Shallice, T. (1991).  Lesioning an attractor network: Investigations of acquired

dyslexia. Psychological Review, 98, 74–95.
Humphreys, G.W., & Riddoch, M.J. (1987).  On telling your fruit from your vegetables: A

consideration of category-specific deficits after brain damage. Trends in Neuroscience, 10,
145–148.

Humphreys, G.W., Riddoch, M.J., & Quinlan, P.T. (1988).  Cascade processes in picture identi-
fication. Cognitive Neuropsychology, 5, 67–103.

Kruschke, J.K. (1992).  ALCOVE: An exemplar-based connectionist model of category learning.
Psychological Review, 99, 22–44.

Kucera, H.F., & Francis, W.N. (1967). Computational analysis of present-day American Eng-
lish. Providence, RI: Brown University Press.

Martin, A., Wiggs, C.L., Ungerleider, L.G., &Haxby, J.V. (1996).  Neural correlates of category-
specific knowledge. Nature, 379, 649–652.

Mauri, A., Daum, I., Sartori, G., Riesch, G., &Birbaumer, N. (1994). Category-specific semantic
impairment in Alzheimer’s disease and temporal lobe dysfunction: A comparative study.
Journal of Clinical and Experimental Neuropsychology, 16, 689–701.

McClelland, J.L. (1979).  On the time relations of mental processes: An examination of systems
of processes in cascade. Psychological Review, 86, 287–330.

Mehta, Z., Newcombe, F., & DeHaan, E. (1992).  Selective loss of imagery in a case of visual
agnosia. Neuropsychologia, 30, 645–655.

Montanes, P., Goldblum, M.C., & Boller, F. (1995).  The naming impairment of living and
nonliving items in Alzheimer’s disease. Journal of the International Neuropsychological
Society, 1, 39–48.

Nosofsky, R.M. (1986).  Attention, similarity, and the identification-categorization relationship.
Journal of Experimental Psychology: General, 115, 39–57.

Plaut, D.C., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychol-
ogy. Cognitive Neuropsychology, 10, 377–500.

Ratcliff, G., & Newcombe, F. (1982).  Object recognition: Some deductions from the clinical
evidence. In A.W. Ellis (Ed.), Normality and pathology in cognitive function. Toronto:
Academic.

Sacchett, C., & Humphreys, G.W.  (1992).  Calling a squirrel a squirrel but a canoe a wigwam: A
category-specific deficit for artefactual objects and body parts. Cognitive Neuropsychology,
9, 73–86.

Sartori, G., & Job, R. (1988).  The oyster with four legs: A neuropsychological study on the
interaction of visual and semantic information. Cognitive Neuropsychology, 5, 105–132.

Sartori, G., Job, R., & Coltheart, M.  (1992). The organization of object knowledge: Evidence
from neuropsychology. In D.E. Meyer & S. Kornblum(Eds.), Attention and performance XIV
(pp. 451–465). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.

Sheridan, J., & Humphreys,  G.W.  (1993). A  verbal-semantic category-specific recognition
impairment. Cognitive Neuropsychology, 10, 143–184.

Silveri, M.C., Daniele, A., Giustolisi, L., &Gainotti, G. (1991).  Dissociationbetweenknowledge
of living and nonliving things in dementia of the Alzheimer type. Neurology, 41, 545–546.

Silveri, M.C., & Gainotti, G. (1988).  Interaction between vision and language in category-spe-
cific semantic impairment. Cognitive Neuropsychology, 5, 677–709.

Snodgrass, J.G., & Vanderwart, M.A.  (1980).  A standardised set of 260 pictures: Norms for
name agreement, image agreement, familiarity, andvisual complexity. Journal of Experimen-
tal Psychology:  Human Learning and Memory, 6, 174–215.

Warrington, E.K., & McCarthy, R.A. (1983).  Category-specific access dysphasia. Brain, 106,
859–878.

INTERACTION OF OBJECT FORM AND MEANING 1129

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29359L.60[aid=295479,csa=0028-0836^26vol=359^26iss=6390^26firstpage=60,nlm=1381810]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8950^28^29114L.2081[aid=295439,nlm=1933235]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0033-295X^28^2998L.74[aid=57383,csa=0033-295X^26vol=98^26iss=1^26firstpage=74]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0264-3294^28^295L.67[aid=295284]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0033-295X^28^2999L.22[aid=289628,csa=0033-295X^26vol=99^26iss=1^26firstpage=22]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29379L.649[aid=57432,csa=0028-0836^26vol=379^26iss=6566^26firstpage=649,nlm=8628399]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0033-295X^28^2986L.287[aid=70279]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-3932^28^2930L.645[aid=27426,csa=0028-3932^26vol=30^26iss=7^26firstpage=645,nlm=1528412]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-3445^28^29115L.39[aid=289639,nlm=2937873]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0264-3294^28^2910L.377[aid=19750,csa=0264-3294^26vol=10^26iss=5^26firstpage=377]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0264-3294^28^295L.105[aid=57440]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0264-3294^28^2910L.143[aid=295418]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-3878^28^2941L.545[aid=295932,csa=0028-3878^26vol=41^26iss=4^26firstpage=545,nlm=2011254]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8950^28^29106L.859[aid=295325,nlm=6652466]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8950^28^29106L.859[aid=295325,nlm=6652466]


Warrington, E.K., & McCarthy, R.A. (1987).  Categories of knowledge. Brain, 110, 1273–1296.
Warrington, E.K., & McCarthy, R.A. (1994).  Multiple meaning systems in the brain: Acase for

visual semantics. Neuropsychologia, 32, 1465–1473.
Warrington, E.K., & Shallice, T. (1984).  Category-specific semantic impairments. Brain, 107,

829–854.

1130 DIXON, BUB, ARGUIN

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8950^28^29110L.1273[aid=295292,nlm=3676701]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-3932^28^2932L.1465[aid=295933,csa=0028-3932^26vol=32^26iss=12^26firstpage=1465,nlm=7885576]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8950^28^29107L.829[aid=212379,nlm=6206910]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8950^28^29107L.829[aid=212379,nlm=6206910]

