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Montréal, Québec, Canada

Martin Arguin # $
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In an effort to understand the factors influencing text
legibility in natural reading, we adapted the visual
spread method (Poirier, Gosselin, & Arguin, 2008) to
natural text. Stimuli were sentences conforming to
MNREAD standards (Legge, Ross, Luebker, & LaMay
1989) mixed with dynamic probabilistic noise—i.e., each
pixel in the image is associated with a probability that its
polarity is inverted on a given refresh cycle of the display
screen. Noise level varied continuously over the image as
initially determined by Gaussian-filtered noise.
Participants adjusted noise levels in the text using the
mouse until the text appeared homogenously noisy. We
assume that participants increased (or decreased) noise
at locations where stimulus features were easy (or
difficult) to encode and thus that local noise settings
correlate with legibility. Data from 11 participants and 30
sentences revealed interesting effects, demonstrating
the validity of the method for assessing the impact of
various factors on noise resistance in natural text. For
example, participants increased noise over (a) spaces
and adjacent letters, (b) the second half of words, (c)
words with more orthographic neighbors but fewer
phonological neighbors, (d) less useful word types, (e)
less complex letters, and (f) diagnostic letters (a novel
metric). Our observations also offer significant insights
on constraints acting upon letter identification as well as
on higher-level processes that are involved in reading.

Introduction

Reading performance is dependent on many factors,
including word frequency (for review, see Ferrand,
2001; Monsell, 1991), letter similarity or confusability

(Appleman & Mayzner, 1982; Bouma, 1971; Fiset,
Dupuis-Roy, Arguin, & Gosselin, unpublished obser-
vations; Rumelhart & Siple, 1974), orthographic and
phonemic neighbors (Andrews, 1997; Coltheart, Da-
velaar, Jonasson, & Besner, 1977; Ferrand, 2001;
Grainger & Jacobs, 1996), and letter position in the
word (Nazir, Jacobs, & O’Regan, 1998; O’Regan, 1990,
1992; O’Regan & Jacobs, 1992; O’Regan & Levy-
Schoen, 1987; O’Regan, Levy-Schoen, Pynte, &
Brugaillère, 1984; Vitu, O’Regan, & Mittau, 1990).

Reading has also been studied via eye tracking (e.g.,
O’Regan, 1990; Rayner, 1998; Rayner & Pollatsek,
1989; Rayner & Sereno, 1994). Such studies found
more fixations on names, verbs, and adjectives (about
85% of them), less on prepositions, conjunctions,
articles, and pronouns (about 35%), as well as more
fixations on longer words than shorter words.

The purpose of the present study is to assess the
merits of a novel approach, the visual spread method
(Poirier, Gosselin, & Arguin, 2008; see below), for the
investigation of reading. For brevity, we will review the
literature where appropriate in the Discussion section.

The visual spread method

We developed the visual spread method to investi-
gate saliency (Poirier et al., 2008; see also Nothdurft,
1993, 2000) where participants adjusted luminance to
match the saliency produced by other attributes (e.g.,
color, orientation) across all locations in that image.
This increased data collection efficiency compared to
two alternatives forced-choice (2AFC) tasks: (a)
participants produced more responses per hour of
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testing, and (b) each response revealed both the
location and intensity of perceived saliency.

In the present study, we adapted the visual spread
task to evaluate which parts of the written sentence
were more noise resistant. Our measure of noise
resistance was subjective, in that participants adjusted
noise levels until they perceived noise to be homoge-
neous over the sentence. Actually, the adjustments
made by participants systematically contained more
noise on some parts of the sentences than others. We
assumed that participants spread the noise to equalize
signal-to-noise ratios across the stimulus. If that
assumption was correct, then the analysis performed on
noise distribution would recover the factors contribut-
ing to the signal.

Advantages of the visual spread method applied to
reading include: (a) the data recovered covers scales
ranging from single letters to entire words, (b) any
factor that varies within the stimulus sentences can be
correlated with the data to estimate its contribution,
and (c) regression analyses can determine if factors are
redundant or unique (see also Appendix D).

We used regression analysis to determine which
factors were correlated with noise resistance, including
a vast array of factors related to letters, words, and
spaces. Our results are congruent with the literature
regarding the factors affecting reading performance
despite methodological differences. The ecological
validity of our method is also discussed (see Appendix
D).

Methods

Ethics statement

The research protocol was reviewed and approved by
the University of Montréal Health Research Ethics
Committee. Written informed consent was obtained
from participants prior to their participation.

Participants

Eleven participants volunteered (four males and
seven females), including the first author, as well as
university undergraduate and graduate students. Their
vision was normal or corrected-to-normal. Participants
were French native speakers and fluent French readers.

Apparatus

Testing and data collection were conducted on a PC
computer (P4 3 GHz; 800 · 600 pixels; 75 Hz refresh

rate). Responses were recorded via mouse button
presses. Viewing distance was 68.5 cm, where 16 pixels
equaled 18 visual angle. The entire stimulus subtended
88 · 168. Stimulus generation and data collection were
controlled by MATLAB with Psychophysics Toolbox
extensions (Brainard, 1997; Pelli, 1997).

Procedure

Visual spread task

In the current visual spread task, participants
equated noise levels over sentences. Nothdurft (1993,
2000) introduced a ‘‘saliency match’’ task where
participants had to indicate which of two stimulus
patches was more salient (i.e., which patch grabbed
attention). This allowed him to equate saliency across
attributes (e.g., luminance, color, orientation). In the
study of Poirier et al. (2008), participants distributed
luminance over an image made of randomly colored
and oriented lines. Adding (or removing) luminance at
an image location increased (or reduced) the visibility
of features at that location. Participants’ luminance
matches were significantly correlated with properties
known to modulate saliency.

In the current study, on each trial, participants were
shown a display containing a sentence written over
three lines in black and white (Figure 1B, C). Each pixel
of the stimulus was white or black and was associated
with a probability of polarity inversion, which consti-
tutes the noise level at that location. Participants were
required to equate apparent noise levels over the image
by left-clicking (or right-clicking) on points where noise
levels were perceived as higher (or lower) than
elsewhere, which decreased (or increased) the noise
level within a small window around that location. The
position and duration of button presses was used to
dynamically adjust noise levels.

Stimuli

Stimuli consisted of two parts: a sentence and
probabilistic noise. Sentences were taken from a bank
of French sentences (Senécal, 2001; Senécal, Gresset, &
Overbury, 2002) constructed to conform to MNREAD
standards (a standard reading speed test; Legge, Ross,
Luebker, & LaMay, 1989): (a) 60 characters long,
including spaces between words, (b) about 10 words
long, (c) divided in three lines, each about equal in
physical length and centered on the screen, and (d)
using simple sentence structures and high-frequency
words easily understood by eight-year-old children.
The height of the letter ‘‘x’’ was 7 pixels (0.448), and
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letters could extend 3 pixels (0.198) above and/or below
that. The font used was Courier. Only lowercase
nonaccented letters were used in the analyses, with
capital letters, accented letters, and apostrophes clas-
sified as ‘‘miscellaneous characters.’’

The noise was dynamic and probabilistic. Every pixel
was associated with a probability of being displayed at
opposite polarity on any frame (13.3 Hz). This
probabilistic noise was defined using (detailed below):
(a) initial noise levels set using filtered random noise, (b)
filtered noise that was normalized, (c) and then
transformed into probabilistic noise, and (d) as partic-
ipants changed noise levels, values were renormalized.

The filtered binary noise (N) was created using
binary noise filtered using a Gaussian filter, defined as:

Gi;j ¼ e
�ði2þj2Þ

r2 ð1Þ
where r¼ 0.58, and (i, j) are coordinates. N was linearly
scaled to a range of 0 to 1, normalized to a mean of 0.5,
and values outside the 0 to 1 range were clipped. Each
time N was updated by user responses, it was
renormalized and reclipped (if necessary). The resulting
scaled filtered noise was transformed into probability
noise (P) using the following transformation:

P ¼ 50%*N
2 ð2Þ

where pixels varied from: (a) showing the sentence at all
times, i.e., never inverting, N¼ 0, P¼ 0%, (b) showing
random noise at all times, i.e., N¼ 1, P¼ 50%, and (c)
showing sentence and noise in various amounts,
average N ¼ 0.5, average P ¼ 12.5%. The squaring
exponent made noise levels vary smoothly over time
when adjusting noise levels because small changes are
noticeable at low-noise levels. Dynamic noise was used
rather than static noise because (a) noise density is
easier to evaluate in dynamic noise due to averaging

over time, and (b) participants saw real-time effects of
adjusting noise.

Participants adjusted noise levels by pressing either
mouse button at a location (N varied by 0.5/s; the right/
left button increased/decreased noise respectively in a
Gaussian window with r¼ 0.58). Each adjustment was
followed by renormalization and reclipping as de-
scribed above. Normalization was done to prevent
participants from setting noise at ceiling or floor values,
as well as to keep average noise levels constant across
participants and sentences. At 12.5% noise level, words
near and far from fixation remained visible. Higher
levels of noise would mask the text context, thus
potentially bias results towards local properties.

Noise could only be adjusted by participants within
an ‘‘area of interest’’ (AOI) on and near text. Outside
the AOI, pixels were kept at 12.5% noise. The AOI was
defined as the areas containing letters extended two
character spaces on each side and two character heights
above and below, Gaussian-blurred (r ¼ 0.58) to
smooth the transition between inside and outside of the
AOI. This encouraged participants to concentrate
responses on or near text. ‘‘Surrounding space’’ is space
contained within the AOI but located either between or
outside sentences.

Following the logic that some sentence parts are
perceived more clearly than others, the point of
subjective noise equality would be negatively correlated
with text clarity. We henceforth use the term ‘‘noise
resistance’’ to denote local noise density, in units of
percent noise.

Temporal sequence

The 30 sentences were divided in three test sessions.
Each sentence was shown about equally often (details

Figure 1. A sample stimulus is shown without noise (A) and after adjustment by participants (B; average). Panel B is also shown with

noise differences amplified (C), or with noise levels represented as gray levels (D; surround gray¼ 12.5% noise; lighter¼ less noise).

The noise levels in Panel B appear roughly homogeneous over the image, despite systematic variation in noise levels as highlighted in

panels C, D.
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below). Each session was 30 min long, for a total of 90
min of testing per participant.

Each trial lasted 20 s, during which participants
could make as many adjustments as they wanted. Noise
levels were adjusted in real-time. Trials were separated
by a blank screen for 500 ms. On 50% of trials, the
sentence was selected randomly. On other trials, the
least-presented sentence was selected, to ensure that
every sentence was presented about equally often. Each
sentence was presented nine times on average, with
repeated presentations using the noise as set in the prior
trial to encourage participants to search carefully for
uneven noise.

Analysis

Analyses were performed in two steps as recom-
mended by Lorch and Myers (1990). (1) Regression
analyses were performed to extract factor weights per
participant. Regression weights represent noise change
per unit of change in a given factor. The standard error
of the means (SEM) of those weights represents the
accuracy of that mean, despite potential individual
differences in strategy. (2) Those weights were analyzed
using repeated measures ANOVAs (to compare weights
together) and t tests (to assess whether individual
weights were significantly different from zero). Due to
individual variability, t tests on individual weights were
less powerful than ANOVAs. For orthogonal factors,
this is equivalent to measuring mean noise relative to
baseline noise and performing standard analyses.
However, the method generalizes to nonorthogonal
factors. Note that since individual differences in
strategies contribute to the error terms of these

analyses, effects that are statistically significant are
effects that show consistency across participants.

For example, the analysis of space-based factors
shown in Figure 2A included two steps: (1) A
regression analysis extracted mean noise for surround-
ing space, spaces, letters near spaces, and miscellaneous
characters for each participant, and (2) t tests
determined independently which of these four factors
influenced noise resistance.

Some factors were decomposed into separate pre-
dictor variables to clarify trends in two steps: (1) A
regression analysis extracted mean noise at each level
of the variable, for each participant, and (2) an
ANOVA determined if noise varied as a function of
that variable. For example, the analysis of the word
length effect shown in Figure 2B included two steps: (1)
A regression analysis extracted mean noise for each
word length and participant, and (2) an ANOVA
determined if mean noise varied with word length.
Note that these factors were also analyzed not
decomposed (e.g., Table 2).

Regression analysis combined factors in three ways:
(a) ‘‘independent,’’ meaning that factors are entered
alone, (b) ‘‘blocked,’’ meaning that all factors from
that block were included, and (c) ‘‘full,’’ meaning that
all factors were included. Analyses including more
factors were performed to evaluate the relative
importance of factors by allowing them to compete for
explained variance, as well as controlling for lower-
level factors. In all cases, all variables were entered
simultaneously; therefore, no preference was given in
ability to compete for accounted variance. All
regressions include controls for spaces, surrounding
spaces, and miscellaneous characters, including ‘‘in-
dependent’’ regressions.

Figure 2. Weights (-y-axis) associated with space-based and positional-based factors. A positive (or negative) weight indicates that

noise was higher (or lower) in the areas indicated by the factor. Participants increased noise on spaces surrounding and between

words (A), on external letters (A), one-letter words (B), on letters further towards the right (C, D, F), and on the last letter. They

decreased noise on miscellaneous characters (A). Error bars and dotted lines represent SEM.
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Factors

Most factors are described in the Results sections
where they are analyzed. Factors requiring a lengthy

explanation are described in Appendices A and B,
which also include some factor statistics.

We used a battery of factors that could potentially
influence noise resistance using multiple regression

l e s c h i e n s

Word length 3 3 3 0 6 6 6 6 6 6

Distance from beginning 1 2 3 0 1 2 3 4 5 6

Distance from end �3 �2 �1 0 �6 �5 �4 �3 �2 �1
Distance left-right �1 0 1 0 �2.5 �1.5 �0.5 0.5 1.5 2.5

Noun 1 1 1 1 1 1

Table 1. Some sample factors and their values for each character position in a sequence of two words. Notes: ‘‘les chiens’’ in English:
‘‘the dogs’’.

Category Factor Independent Blocked Full

Figure

reference R
2

Spaces & misc. Surrounding space 1.448 6 0.211 0.659 6 0.175 1.615 6 0.396 2A 21.7% 6 4.1%

Spaces 1.861 6 0.163 1.939 6 0.169 0.754 6 0.259

Near spaces 0.506 6 0.063 0.506 6 0.063 0.182 6 0.119

Miscellanous characters �0.402 6 0.090 �0.454 6 0.089 �0.092 6 0.111

Positional Word length �0.018 6 0.011 — 2B–F 20.8% 6 3.9%

Left-right 0.107 6 0.022 —

From end 0.084 6 0.016 —

From beginning 0.060 6 0.016 —

Letters Width �0.397 6 0.268 1.181 6 0.323 — 3 27.7% 6 4.3%

Confusability in noise 0.795 6 0.120 1.339 6 0.328 —

Confusability low contrast 0.581 6 0.102 �0.880 6 0.257 —

Complexity �1.092 6 0.150 �1.446 6 0.186 —

Log letter frequency 0.272 6 0.046 0.074 6 0.062 —

Diagnosticity 0.363 6 0.132 0.099 6 0.137 —

Sublexical Grapheme length 0.000 6 0.052 �0.003 6 0.053 0.019 6 0.052 4A, B 20.3% 6 3.7%

Syllable length �0.017 6 0.019 0.006 6 0.018 �0.021 6 0.011

Token syllable frequency 0.019 6 0.025 �0.128 6 0.040 �0.101 6 0.032

Type syllable frequency 0.145 6 0.034 0.258 6 0.046 0.154 6 0.050

Frequencies Log frequency 0.014 6 0.008 �0.017 6 0.013 0.022 6 0.028 4C, D 20.6% 6 3.7%

Log cumulative Frequency 0.015 6 0.009 0.024 6 0.014 �0.021 6 0.029

N homographs 0.021 6 0.015 �0.011 6 0.013 0.013 6 0.019

N homophones 0.001 6 0.006 0.001 6 0.007 �0.007 6 0.007

Log orthographic neighbors 0.052 6 0.023 0.097 6 0.022 0.056 6 0.027

Log phonetic neighbors 0.000 6 0.019 �0.056 6 0.020 �0.037 6 0.020

Word type Auxiliary verb 0.445 6 0.090 0.302 6 0.129 0.484 6 0.253 4E, F 20.6% 6 3.8%

Conjunction 0.331 6 0.188 0.191 6 0.219 0.528 6 0.255

Article 0.159 6 0.077 0.014 6 0.117 0.369 6 0.222

Pronoun 0.142 6 0.114 �0.001 6 0.146 0.393 6 0.187

Verb 0.017 6 0.029 �0.121 6 0.098 0.425 6 0.213

Preposition �0.004 6 0.066 �0.138 6 0.109 0.286 6 0.161

Noun �0.038 6 0.073 �0.159 6 0.080 0.339 6 0.168

Determiner �0.093 6 0.113 �0.223 6 0.158 0.320 6 0.259

Adverb �0.108 6 0.064 �0.233 6 0.105 0.199 6 0.185

Adjective �0.146 6 0.064 �0.264 6 0.119 0.264 6 0.210

Table 2. Summary of analyses. Notes: All analyses include the factors ‘‘spaces,’’ ‘‘miscellaneous characters,’’ ‘‘surrounding space,’’ and
a constant. Weights are shown for independent, blocked, and full regressions. Intervals are SEM across participants. Factors marked
by ‘‘—’’ were included in the analysis as controls. Empty lines represent factors not included in the given regressions. R2 for the full
analysis was 29.5% 6 4.2%.
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analysis. Table 1 shows some sample factors for two
sample words, along with the numerical value assigned
to each letter position on those factors. Note that all
letter positions received the same value if a factor
characterizes the entire word. Note also that categorical
variables were assigned a numerical code of nominal
value.

Factors were selected if they met the following
criteria: (a) they had to be easily quantifiable based on
physical characteristics or previously collected data,
and (b) they had to vary naturally within the selected
sentences, rather than requiring specific manipulations.
Note that the analysis could have included further
factors, and data could be re-analyzed as further
factors are added. However, we believe this set of
factors constitutes a fairly comprehensive list of factors
present in normal reading situations. The main factors
are listed in Table 2, and Table 1 shows some examples
of factors used. Factors are described in Appendices A
and B. Diagnosticity was a novel factor to estimate how
important single letters were to word recognition.
Confusability measured how likely a letter was to be
confused as another letter.

Results

Participants systematically set noise levels higher
in certain locations than others, resulting in system-
atic noise modulations over the image, which we
quantified as ‘‘noise resistance’’ (in units of percent
noise).

Factors underlying noise resistance were analyzed in
four blocks: (a) space-based, (b) positional, (c) letter-
based, and (d) text-based factors. The main results are
summarized in Table 2. As new factors are added, some
weights on previous factors changed (e.g., reverse
direction, drop to zero). Such weight changes occur
when other factors compete to explain the same
variance. Such changes are thus informative and
discussed below.

Space-based factors

This block included: (a) ‘‘surrounding space’’
indicating the empty space directly surrounding the
text, but not including spaces between words, (b)
‘‘spaces,’’ (c) ‘‘near spaces’’ indicating letters adjacent
to one or two spaces, and (d) ‘‘misc. letters’’
including apostrophes, accented letters, and upper-
case letters (Figure 2A). For these factors, a weight
of zero indicated that noise was as high as noise over
regular letters.

Participants had a higher resistance to noise for
surrounding space, spaces, and the external letters of
words than for internal letters, ts(10) � 6.9, ps ,
0.0001. Participants put less noise on miscellaneous
characters than on letters, t(10) ¼�4.5, p ¼ 0.001.

Positional factors

Positional factors refer to the position of a letter in a
word (in number of letters; see Table 1): (a) word length
(M¼ 5.54, SD¼2.26), (b) ‘‘left-right’’ distance from the
word’s center keeping directional information (positive
was towards the right), and (c–d) distance from the
beginning/end of words. The factors were analyzed
separately for odd- and even-length words as well as
combined into a single analysis, with similar results.

Positional factors were decomposed into indepen-
dent levels to analyze trends (see ‘‘Procedure:
Analysis’’ section). For example, the factor ‘‘distance
from beginning’’ is decomposed into the sub-catego-
ries ‘‘first letter,’’ ‘‘second letter,’’ etc., each of which
indicates if a letter belongs to the subcategory (1 ¼
yes, 0 ¼ no).

Participants increased noise on (Figure 2B through
F): (a) one-letter words, F(10, 100) ¼ 7.55, p , 0.001;
LSD ps , 0.02; Figure 2B, (b) letters further towards
the right of a word, linear Fs(1, 10) . 14.0, ps � 0.004;
Figure 2C, D, and F, (c) letters further from the center
of a word, quadratic Fs(1, 10) . 13.6, ps , 0.004;
Figure 2C, D, and (d) the last letter (last letter different
from any previous letter; F [10, 100]¼ 12.06, p , 0.001;
LSD ps , 0.015; Figure 2E). Taken together, these
factors indicate that participants increased noise levels
on letters away from the center and towards the right of
words.

Letter-based factors

This block included six factors (Appendices A and B,
‘‘Factors’’ section in the Methods, and Table 3): (a)
letter complexity, (b) letter width, (c–d) confusability in
noise or in low contrast, (e) log letter frequency, and (f)
diagnosticity. The variables complexity, letter width,
and diagnosticity were normalized to a maximum value
of 1 for the regression analysis.

Noise-resistant letters were frequent, easily confusable,
diagnostic, and less complex (Table 3; Figure 3). Letter
width hadno effect on its own, t(10)¼�1.5, p¼0.17, but if
entered with other factors, wider letters received more
noise, ts(10) � 3.7, p � 0.0045. That is, the letter width
effect was too small to be observed on its own.

Both confusability factors were positively correlated
with noise resistance (independent: ts[10] � 5.7, ps ,
.0003). Contrary to intuition, letters of high confus-
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ability received more noise. When entered with other
factors, ‘‘confusability in noise’’ remained, ts(10) � 3.8,
ps , 0.0035, whereas ‘‘confusability in contrast’’
became negatively associated with noise resistance,
ts(10) � �3.2, ps , 0.01. In other words, participants
increased noise on letters with low confusability in low
contrast, and greater confusability in noise.

Complex letters were less resistant to noise in all
analyses, ts(10) � �6.9, ps , 0.0001.

Frequent letters received more noise, t(10) ¼ 5.9, p
¼ 0.0002, but this effect disappeared when other
factors were included in the analysis, ts(10) � 1.2, ps
� 0.26, suggesting that letter frequency did not
contribute uniquely to explained variance.

Higher diagnosticity was associated with an increase
in noise resistance, t(10) ¼ 2.8, p ¼ 0.020. The effect
disappeared when other factors were included, ts(10) �
0.54, ps � 0.60, suggesting that diagnostic letters are
noise resistant due to other features.

Taken together, letter-based factors offer a solid
account of noise resistance for individual letters of the
alphabet (Figure 3C). The correlation between pre-
dicted noise using letter-based factors (y-axis), and data
averaged over multiple instances of a letter (-x-axis)

was high (r¼ 0.808). Error bars indicate SEM based on
individual variability, with error bars for the model
based on individual variability of regression fits.

Text-based factors

The last block of factors includes 24 factors,
classified into: (a) sub-lexical statistics, (b) frequencies,
and (c) word type.

Of the sublexical factors (Figure 4C, D), only
syllable frequency by type was independently corre-
lated with noise resistance, t(10) ¼ 4.3, p ¼ 0.0016;
all others: jtsj(10) , 0.75, ps . 0.39. In the blocked
analysis, noise resistance increased with type fre-
quency, t(10) ¼ 5.7, p ¼ 0.0002, and decreased with
token frequency, t(10) ¼ �3.23, p ¼ 0.009. The
syllable frequency factors (type and token) remained
significant (or at least near-significant) in the full
analysis, jts(10)j . 3.09, ps , 0.012; except for
token syllable frequency in the full analysis: t(10) ¼
�2.0, p ¼ 0.076. Grapheme and syllable length were
not significant in any analysis, jtsj(10) , 1.82, ps .
0.099. This suggests that the two syllable frequency
factors are unique contributors to explained vari-
ance, where words are more noise resistant if they
have high type frequencies yet low token frequen-
cies.

Of the frequency factors (Figure 4E, F), log
orthographic neighbor frequency was associated with
an increase in noise, ts(10) � 2.2, ps � 0.049; near-
significant in the full analysis: t(10) ¼ 2.07, p¼ 0.065,
and log phonological neighbor frequency was only
significant in the blocked analysis, t(10) ¼�2.8, p ¼
0.019; independently: t(10)¼ 0.0, p¼ 0.99; full: t(10)¼
�1.84, p ¼ 0.095. None of the other frequency-based
factors was significant in any of the analyses (log lexical
frequency, log cumulative frequency, number of
homographs, number of homophones; jtjs � 1.8, ps �
0.10. Thus participants increased noise on words that
were graphically similar to other words, and had a
more unique pronunciation. The phonological effect
was more dependent on which factors were included in
the analysis.

There was an effect of word type, F(9, 90)¼ 4.1, p¼
0.0 (Figure 4E, F), with words associated with sentence

Factor Noise resistance Diagnosticity Log letter frequency Complexity Confusability in low contrast

Confusability in noise 0.646 0.410 0.566 �0.756 0.953

Confusability in low contrast 0.676 0.487 0.644 �0.713
Complexity �0.561 �0.239 �0.457
Log frequency 0.428 0.810

Diagnosticity 0.442

Table 3. Correlations between several measures based on the same font. Notes: If the factor complexity is multiplied by �1, all
correlations become positive here.

Figure 3. Weights (y-axis) associated with letter-based factors,

when entered independently (A) or ‘‘blocked’’ together (B). A
weight of ‘‘0’’ indicates that the factor is not associated with

noise increase or decrease. (C) Correlation between averaged

noise and predicted noise per letter. ‘‘Low c.’’ is an abbreviation

for ‘‘low contrast.’’
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understanding generally receiving less noise. We
observed the following ranking of word type from
lowest to highest noise resistance (all ps , 0.05): (a)
adjectives, (b) verbs, (c) articles, and (d) auxiliary verbs.
Other word categories were too variable across
participants to establish a statistically reliable ordering.
The word-type effect was not significant in the full
analysis, F(9, 90) ¼ 1.7, p¼ 0.098, suggesting that the
word-type effect could be due to other factors.

Discussion

Summary of results

Within 90 min of data collection per participant, the
novel and intuitive method of visual spread produced
reliable data on perceived text clarity or noise resistance
throughout a set of sentences.

Noise resistance, as measured using the visual spread
task, was significantly correlated with many factors
consistent with the reading literature, including (a)
position of spaces, (b) letter position within words, (c)
letter complexity, (d) letter confusability, and (e) lexical
characteristics. We also document an effect of the novel
factor of letter diagnosticity. Thus, although partici-
pants were not explicitly asked to read the sentences,
their responses nevertheless correlated with some
factors known to influence readability.

Although many factors were consistent across
analyses, some factors were not. This suggests either

non-additive effects or smaller effects that can be
masked by larger effects. Examples of nonadditivity
include: (a) the log number of phonetic neighbors was
significant depending on which other factors were
included, (b) the ‘‘confusability in low contrast’’ factor
reversed sign when the ‘‘confusability in noise’’ factor
was included, (c) token syllable frequency was only
significant when type syllable frequency was included in
the analysis, and (d) many effect sizes were reduced
with controls for letters and position. These interaction
effects are discussed below where appropriate, along
with what they tell us about reading.

Overall, noise resistance seems to increase around
spaces and external letters, towards the right of words,
on easily confusable letters, on less complex letters, and
on word with more orthographic neighbors. Other
effects were found but were less consistent across
analyses (see below).

Implications for optimal viewing position

The optimal viewing position for word recognition is
at the center of the word, or slightly left of center, and
performance is better for ocular fixations on the first
half than on the second half of the word (Nazir et al.,
1998; O’Regan, 1990, 1992; O’Regan & Jacobs, 1992;
O’Regan & Levy-Schoen, 1987; Vitu et al., 1990).
Fixations away from the optimal position bring
performance costs of about 10–20 ms per letter (Nazir
et al., 1998; O’Regan, 1992; O’Regan & Levy-Schoen,
1987; O’Regan et al., 1984; Vitu et al., 1990). One
reason suggested for an advantage for external letters is

Figure 4. Weights (y-axis) associated with text-based factors, when entered together (blocked; right) or independently (left). Factors

are arranged in panels according to the blocks they were entered in. A weight of ‘‘0’’ indicates that the factor is not associated with

noise increase or decrease. (A, B) Of the four subword statistics, only the syllabic frequencies were significantly correlated with noise

levels, where participants increased noise on high syllable type frequency and low syllable token frequency. (C, D) Participants

increased noise on words with more orthographic neighbors and fewer phonological neighbours. (E, F) Word type also influenced

noise levels.
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that they are less exposed to crowding (Bouma, 1970;
Pelli, Palomares, & Majaj, 2004), i.e., letters inside
words are masked by flanking letters.

In our study, participants increased noise on and
around spaces more than on the letters themselves.
Noise resistance was lowest at about two letters left of
word center, i.e., around the optimal viewing position.
Participants increased noise on word endings (espe-
cially on the last letter), which, in French, are usually
less informative (Blais et al., 2009; Clark & O’Regan,
1999). This suggests a noise placement strategy to move
noise away from meaningful and crowded areas of
words.

The size of the Gaussian spread of noise adjustment
used in this study could explain in part why partici-
pants increased noise on external letters. Adding noise
on spaces also adds some noise over external letters.
This possible artefact does not explain many effects
however, e.g., lower noise on the first half of words or
the letter-based effects. Nevertheless, a replication of
this study could be performed with noise density set per
letter instead of spread using a Gaussian.

Implications for letter processing

Noise resistance was best predicted by the block of
variables linked to letter characteristics. This suggests
that modifying alphabet characteristics could substan-
tially influence reading performance. Indeed, font
choice does impact reading speed, comprehension,
perceived attractiveness, and legibility (Bernard, Lida,
Riley, Hackler, & Janzen, 2002; Mansfield, Legge, &
Ban, 1996). This is convenient, because it is easier to
change fonts (or even an alphabet) than word
frequencies or statistics of word types. Our results
include measures of variability within the alphabet
chosen. Thus we can examine the relationships among
letters that are often overlooked when reading perfor-
mance is measured across sentences or paragraphs. The
pattern of correlations between letter-based variables
(Table 3) suggests that the alphabet is more optimal for
writing than for reading (see Appendix C for details).
Frequent letters are simple, making them easier to
write. However, frequent and diagnostic letters are
easily confusable with other letters, making them less-
than-optimal for reading.

Implications for letter degradation methods

Our study compares three methods of degrading
letter visibility: probabilistic noise (here) and confus-
ability in both noise and low contrast (Fiset et al.,
unpublished observations). Not surprisingly, they were
all correlated. Results suggest that participants in-

creased the visibility of letters that are already easier to
identify. However, the ‘‘confusability in low contrast’’
weight changed sign when the ‘‘confusability in noise’’
weight was included in the same analysis. This suggests
that these two measures have a shared component (they
both degrade letter recognition) as well as a unique
component (the specific way letter recognition is
degraded).

The three degradation techniques differ in how much
they affect letter shape and contrast: (a) ‘‘confusability
in noise’’ used additive noise, which influenced both
letter shape and contrast, (b) ‘‘confusability in low
contrast’’ used contrast reduction, which mainly
influenced contrast, and (c) ‘‘probabilistic noise’’ (as
used here), which influenced letter shape mainly. Thus,
a fair approximation of shape degradation (probabi-
listic noise) would be the ‘‘shape þ contrast’’ degrada-
tion (confusability in noise) minus the ‘‘contrast’’
degradation (confusability in contrast). Thus a regres-
sion approach as used here shows that different
methods to degrade letters are not fully equivalent,
with letters being differentially sensitive to different
degradation methods.

Implications for sublexical effects

A grapheme is defined as the written representation
of a phoneme. Studies have shown that words
controlled for length take longer to read or identify if
they have longer graphemes or syllables (Coltheart,
Curtis, Atkins, & Haller, 1993; Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001; Grainger & Jacobs,
1996; Plaut, McClelland, Seidenberg, & Patterson,
1996; Rastle & Coltheart, 1998; Rey, Jacobs, Schmidt-
Weigand, & Ziegler, 1998; Rey, Ziegler, & Jacobs,
2000), suggesting longer processing time for longer
graphemes. Our results show that neither grapheme
length nor syllable length played a role in noise
resistance. Our experiment did not include time
pressure, and it is possible that performance costs
associated with longer graphemes mainly occur under
time pressure.

Conrad, Carreiras, and Jacobs (2008) studied the
effects of syllable frequency on lexical decision:
quantifying syllable frequency both by type (number of
syllabic neighbors) and by token (summed word
frequencies across syllabic neighbors). They found
facilitation for type frequency, and inhibition for token
frequency. Our study replicated their results: noise
resistance increased with type frequency and decreased
with token frequency. However, our findings differ
from Conrad et al.’s on the sensitivity of the two effects
to methodological changes or the inclusion of control
variables. Conrad et al. (2008) report that the token
frequency effect was reliably found across the literature
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and their own study, whereas the type frequency effect
was dependent on methodological demands and/or
statistical controls. In contrast, in our study, the type
frequency effect was reliably found across analyses
whereas the token frequency effect was dependent on
which other variables were included in the analysis.
One possibility is that the two effects are differently
sensitive to methodological demands (e.g., speeded
responses). Further studies could investigate the
temporal properties of these effects to confirm.

Implications for lexical frequency

Frequently occurring words are easier to recognize
than less frequent words (for review, see Ferrand, 2001;
Monsell, 1991) including in French (Ferrand, 2000;
Grainger, Spinelli, & Ferrand, 2000; O’Regan &
Jacobs, 1992). This effect is seen across word types
(Gordon & Caramazza, 1985; Segui, Frauenfelder,
Lainé, & Mehler, 1987). Shorter words are frequent
(Zipf, 1935). Word frequency and word length seem to
have independent effects on performance (O’Regan &
Jacobs, 1992; Vitu et al., 1990). Reading speed is also
improved for words with a higher cumulative frequency
(word frequencies summed across same-family words;
Beauvillain, 1996; Bradley, 1979; Burani & Caramazza,
1987; Burani, Salmaso, & Caramazza, 1984; Colé,
Beauvillain, & Segui, 1989; Holmes & O’Regan, 1992;
Taft, 1979).

In our study, neither lexical frequency nor cumula-
tive lexical frequency played a significant role, although
both showed trends in the right direction, consistent
with a facilitory effect. Controlling for other factors did
not help these two factors reach statistical significance.
It is possible that these effects may require time
constraints or reading performance measurement.

Implications for orthography

Orthographic neighborhood was measured as (a)
frequency of the most frequent neighbor, and (b) the

number of orthographic neighbors (Andrews, 1997;
Ferrand, 2001; Grainger & Jacobs, 1996). Words with
several orthographic neighbors are facilitated (An-
drews, 1989, 1992; Forster & Shen, 1996; Sears, Hino,
& Lupker, 1995; but see Carreiras, Perea, & Grainger,
1997; Coltheart et al., 1977), but high-frequency
orthographic neighbors inhibit performance (Carreiras
et al., 1997; Grainger, 1990; Grainger & Jacobs, 1996;
Grainger, O’Regan, Jacobs, & Segui, 1989, 1992;
Grainger & Segui, 1990; Perea & Pollatsek, 1998).
These effects are dependent on various factors (An-
drews, 1997; Grainger & Jacobs, 1996), including
interactions with task and language.

Here, orthographic neighbors had a facilitation
effect, consistent with the literature. The orthographic-
neighbor effect resisted the introduction of controls,
suggesting this effect was a true higher-level effect.

Implications for phonology

Overall, homophones impair performance: (a) less
frequent words in homophonic pairs get inhibited
(Davelaar, Coltheart, Besner, & Jonasson, 1978;
Rubenstein, Lewis, & Rubenstein, 1971; but see Clark,
1973; Coltheart et al., 1977), (b) pseudo-homophones
are harder to reject than other non-words (Coltheart et
al., 1977; Rubenstein et al., 1971), and (c) higher
misclassification rates for words into the category of its
homophone (e.g., ‘‘rows’’ misclassified as a flower;
Daneman & Reingold, 1993; Daneman, Reingold, &
Davidson, 1995; Jared, Levy, & Rayner, 1999; Peter &
Turvey, 1994; Van Orden, 1987; Van Orden, Johnston,
& Hale, 1988; Van Orden et al., 1992; Ziegler & Jacobs,
1995; Ziegler, Van Orden, & Jacobs, 1997). Some of
these effects are small, observable mainly with pseudo-
words, present mostly in low-frequency words, and/or
possibly dependent on strategy (Clark, 1973; Coltheart
et al., 1977; Coltheart, Patterson, & Leahy, 1994;
Davelaar et al., 1978; Jared & Seidenberg, 1991;
McCusker, Hillinger, & Bias, 1981; Seidenberg, 1985a,
1985b).

Our results show inhibition on words with more
phonological neighbors, but only when the effect of

Figure 5. Hypothesized relationships between the variables related to letters. All correlations were positive between the variables

shown. Diagnostic letters are frequently used (left). Efficiency was measured using noise resistance and simplicity (the opposite of

complexity). Letter confusability was measured in low contrast and in noise (right). The results are consistent with an alphabet that

promotes faster writing, but not necessarily faster or easier reading. Dotted lines indicate correlations that should be inverted when

designing an alphabet to promote reading performance (without necessarily making writing performance worse), by changing the

relationship between confusability and all other variables, while retaining all other relationships.
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orthographic neighbors is controlled for. The direction
and fragility of these effects is consistent with the
literature. This suggests that extra processing is
required to discriminate between phonologically close
words.

Implications for word type and word length

Eye movements recorded during reading (O’Regan,
1990; Rayner, 1998; Rayner & Pollatsek, 1989; Rayner
& Sereno, 1994) show that participants make more
fixations on longer words (100% for eight or more
letters vs. 25% for two to three letters), names, verbs,
and adjectives (85%), and fewer on prepositions,
conjunctions, articles, and pronouns (35%).

Our results are consistent with a strategy of moving
noise away from words that are important for
understanding sentences (i.e., noise increased on
auxiliary verbs & articles, and decreased on verbs &
adjectives). Our analyses suggest that the word-type
effect is partly or mainly due to lower-level statistics.
For example, word types may be statistically different
in complexity or frequency, and those differences may
underlie the word type effect.

We also found a word-length effect in the form of
greater noise for single-letter words relative to longer
words. This suggests that longer words may be fixated
more because they extend beyond the visual span
(Legge, Cheung, Yu, Cheung, Lee, & Owens, 2007;
Pelli et al., 2007) or are more likely to be important,
and not because they are somehow more masked or
noisy.

Conclusion

Our study is consistent with the literature on (a)
optimal viewing position, (b) letter complexity, (c)
syllable frequency, and (d) orthographic and phono-
logical neighbors. We did not replicate effects of lexical
frequency or word length, and it is unclear if this was
due to lack of statistical power, or differences in
methodology. There are three novel conclusions from
our study: (a) the word type effect may reflect different
word statistics across word types (e.g., length, letters),
(b) letter degradation techniques have similar but not
fully equivalent effects, and (c) the alphabet may have
been more optimized for writing rather than for
reading, given that frequent and diagnostic letters were
also easily confusable.

The efficiency of the method for data collection is
noteworthy. This efficiency is gained by combining the
advantages of adjustment methods to the ability to
make adjustments at any location over a sentence.
Essentially, participants were free to concentrate their

responses at locations that deviated most from
subjectively homogeneous noise, thus quickly reducing
apparent noise variations throughout the stimulus. This
method quickly converged on responses that were
similar across participants that, once analyzed, showed
effects similar to those reported in the literature.

Our novel results can be used to generate predictions
that can be tested in future work. Specifically, we
predict that (a) making diagnostic letters more dissim-
ilar from each other may help improve reading
performance, (b) masking easily confusable letters will
impair performance more than masking easily recog-
nizable letters in a normal reading task, and (c) some
higher-level effects in reading may be at least partially
accounted for by low-level word characteristics like
letter complexity, diagnosticity, and confusability.

Further studies could extend our method to other
factors related to reading. For example, the study could
be extended to letter features either by decreasing the
spatial scale of the noise spread in a subsequent study,
or by using de-blurring techniques on the current data.
Moreover, identification of noise resistance (and
legibility in general) at a letter- or word-sized spatial
scale would be useful in the design of text enhancement
systems.

Keywords: visual saliency, reading, visual noise,
attention
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Appendix A

Details of factors

All frequency data was taken from Lexique 3.55
(New, Pallier, Brysbaert, & Ferrand, 2004; New,
Pallier, Ferrand, & Matos, 2001).

Frequencies

Frequency factors are often log-transformed before
analyses, for the purpose of reducing the weight of

high-frequency items. Here, frequency factors were
only log-transformed when doing so increased stability
of results across analyses (i.e., showed fewer changes
when entering or removing other factors) and/or
decreased individual variability.

Word frequency statistics included several factors:
(a) lexical frequency (M ¼ 1,243 per million; SD ¼
3,788; min. , 1; max. ¼ 38,929; power law: R2 ¼
90.5%; exponent ¼�2.34), (b) cumulative word
frequency, i.e., lexical frequency summed across
words with the same lemma (M ¼ 1,833 per million;
SD ¼ 4,370; min. , 1, max. ¼ 38,929; power law: R2

¼ 86.7%; exponent ¼�2.30), (c) number of homo-
graphs, i.e., other words with same spelling as target
(M ¼ 1,688; SD ¼ 0,827; max. ¼ 5), (d) number of
homophones, i.e., other words with same pronunci-
ation as the target (M ¼ 5,038; SD ¼ 3,628; max. ¼
24), (e) orthographic neighbor frequency, i.e.,
summed frequency of other words with the same
number of letters as the target that differ by a single
letter (M ¼ 4,974; SD ¼ 5,254; max. ¼ 25), and (f)
phonological neighbor frequency, i.e., summed fre-
quency of other words with the same number of
graphemes as the target that differ by a single
grapheme (M ¼ 25,052; SD ¼ 32,458; max ¼ 127).

Complexity

The factor complexity (or perimetric complexity)
was defined as contour length squared divided by ink
area (Attneave & Arnoult, 1956; Pelli, Burns, Farell,
& Moore-Page, 2006), with contour length simplified
to only include intensity changes due to horizontal
and vertical edges, because line thickness was one
pixel.

Letter width

Letter width was the horizontal extent of letters, in
pixels, plus one pixel for interletter spacing.

Confusability

Confusability measures (i.e., in noise or low con-
trast) were taken from a study conducted in our lab
(Fiset et al., unpublished observations), which used the
same font as used here, although they used a finer
spatial sampling. Confusability corresponds to the
proportion of trials on which a particular letter, briefly
exposed (16.67 ms), was reported incorrectly. Average
accuracy was maintained at 50% across letters by either
adding noise or lowering contrast.
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Letter frequency

Letter frequency was taken from a published dataset
for written text in French (Lexique 3.55; New et al.,
2001; New et al., 2004).

Letters that appeared fewer than 10 times in the 30
sentences (i.e., ‘‘k’’ and ‘‘w’’ to ‘‘z’’) were not included in
correlations with noise resistance. Those letters are
included in all other correlations, and correlations with
or without them were similar.

Diagnosticity

Diagnosticity was a measure of word confusability
increase when a given letter cannot be recognized.
Diagnosticity was calculated using the Lexique 3.55
database and an algorithm that: (1) selected a target
letter and a replacement letter, (2) changed every
instance of the target letter in the word list by the
replacement letter, simulating letter confusion, (3)
counted the number of identical words in the
modified list, simulating word confusion due to letter
confusion, (4) repeated Steps 1 through 3 for every
target and replacement combination possible, and
stored the results into a matrix, (5) subtracted from
the matrix the number of words that are identical if
no letter was changed, thus isolating word confusion
due to letter confusion, (6) summed the matrix for a
target letter across replacement letters to give the
diagnosticity of that letter, i.e. the extra confusability
due to the target letter being misread, and (7)
normalized to the 0 to 1 range for the regression

analysis. Diagnosticity calculated by factoring in
word frequencies or letter frequencies produced
similar results, thus only the unweighted diagnostic-
ity is discussed here.

Sublexical factors

Sub-lexical statistics included the following factors
(statistics in our samples shown in parentheses): (1–2)
letters per grapheme (‘‘grapheme length’’; M¼ 1.44; M
¼0.36; min.¼1; max.¼3) or syllable (‘‘syllable length’’;
M ¼ 3.6; SD¼ 1.2; words had an average of 1.638
syllables, SD ¼ 0.758; min. ¼ 1; max.¼ 4), and (3–4)
syllable frequency by type, i.e., the number of syllabic
neighbors, and by token, i.e., the sum of the lexical
frequencies of all syllabic neighbors (M ¼ 1,096 and
4,646 per million; SD ¼ 1,524 and 7,478; max.¼ 8,160
and 49,857 for token and type, respectively).

Word type

Word type included the following categories, using
sentence context to determine category (frequency of
occurrence in our stimuli indicated in parentheses): (a)
auxiliary verbs (1.7%); (b) conjunctions (0.9%); (c)
articles (2.6%); (d) pronouns (5.5%); (e) verbs (19.2%);
(f) prepositions (4.1%); (g) nouns (42.6%); (h) deter-
miners (3.2%), including quantifiers, demonstrative
adjectives, and possessive adjectives; (i) adverbs (5.0%);
and (j) adjectives (15.2%). These categories were
mutually exclusive.
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Appendix B

Appendix C

Implications for letter processing

The pattern of correlations between letter-based
variables (Table 3) suggests that the alphabet is more
optimal for writing than for reading. This argument is
presented below in three parts: (a) the results are
reviewed from the perspective of reading constraints,
(b) the results are reviewed from the perspective of
writing constraints, and (c) the results are contrasted to
those of Changizi, Zhang, Ye, and Shimojo (2006) who
argue, based on topology distributions, that alphabets
are developed based on visual constraints rather than
motor constraints.

An alphabet designed to be easy to read would focus
on making diagnostic letters (especially frequent ones)
easier to read, i.e., more efficient and less confusable.
Supporting this, we found that frequent and diagnostic

letters were more efficiently perceived as measured by
noise resistance (see also Pelli et al., 2006). However, in
French at least, frequent and diagnostic letters are
unfortunately easily confused with other letters (Table
3), making the alphabet suboptimal for reading. We
propose that efficiently perceived simple letters are
more easily confused together because they lack
distinctive features (see below; Attneave & Arnoult,
1956; Pelli et al., 2006).

An alphabet designed to be easy to write would focus
on making frequent letters simple, so that writing speed
would be improved. Supporting this, frequent letters
were less complex. Although not directly relevant to
writing performance, frequent letters tend to be more
diagnostic and easily confusable (e.g., ‘‘i,’’ ‘‘l,’’ com-
pared to ‘‘m,’’ ‘‘w,’’ ‘‘y’’). That is, by meeting writing
constraints, reading constraints were not optimized.
Thus in designing an alphabet that is both easy to write
and to read, the emphasis should be on making
diagnostic and frequent letters both easy to encode

Confusability in

Noise (%) Contrast (%) Complexity Log letter frequency Noise resistance Diagnosticity

a 67.0 71.8 128.8 8.73 11.15 14,293

b 45.3 33.0 134.6 1.77 10.78 7,482

c 44.5 44.5 117.6 3.70 11.11 9,699

d 42.8 45.5 134.6 2.39 10.61 7,345

e 65.5 85.3 130.7 10.56 10.87 25,110

f 69.0 58.8 101.9 1.30 11.24 6,450

g 36.3 21.0 165.1 1.97 10.43 6,179

h 41.3 39.5 121.5 1.94 10.43 2,552

i 84.8 93.3 73.1 8.49 11.14 12,310

j 68.8 73.3 100.0 0.25 10.91 1,526

k 23.8 31.3 134.6 0.53 651

l 85.0 90.8 72.3 4.72 11.28 10,935

m 18.0 12.8 145.2 2.92 10.67 9,602

n 40.0 47.3 109.7 7.07 11.13 12,556

o 67.8 64.5 115.2 6.26 10.99 6,259

p 28.8 20.0 142.4 2.48 10.39 9,305

q 47.5 45.0 142.4 0.55 10.98 489

r 60.8 66.3 98.0 7.78 11.42 20,186

s 48.8 58.8 149.3 7.23 11.31 34,204

t 86.8 85.8 94.1 6.69 11.48 19,596

u 43.5 42.3 101.9 4.17 11.05 5,520

v 51.5 56.0 135.5 1.20 11.31 6,921

w 12.5 13.5 167.5 0.22 115

x 46.8 55.0 171.4 0.35 845

y 13.3 14.0 171.4 0.73 1,731

z 27.5 27.8 128.8 0.46 4,819

Letter statistics. Notes: Letter statistics used in the regression model, as well as mean noise resistance for lowercase letters that
appeared at least 10 times in the experiment.
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(e.g., high noise resistance, low complexity) and easy to
discriminate from each other (e.g., low confusability).

The only study that looked empirically at whether
alphabets were designed based on reading or writing
constraints is a study comparing the topology distri-
bution of alphabets, shorthand, trademarks, and
natural scenes (Changizi et al., 2006). They measured
the relative frequency of different topologies within a
stimulus set (e.g., alphabets, trademarks, natural
scenes), and compared topology distributions across
stimulus sets. Their conclusions can be summarized as
follow: (a) alphabets have topology distributions
similar to trademarks and natural scenes, suggesting
that they are influenced by visual constraints, (b)
alphabets have a topology distribution that is dissim-
ilar to that of shorthand, suggesting that motor
constraints play a much lesser role in alphabet design,
and (c) alphabets have a topology distribution that
differs from scribbles or random lines, suggesting that
alphabets are not random. Their conclusion conflicts
with ours. However, we reconcile the diverging views
below.

Changizi et al. (2006) did their analysis over a
collection of alphabets, thus they lack single-letter data
to compare with. This issue is critical because the
assignment of letter shapes to sounds may itself be
consistent with motor constraints, consistent with our
results. Early alphabet designers likely associated
simple symbols to frequent sounds first, and then
created symbols of increasing complexity for increas-
ingly infrequent sounds. Although they made symbols
generally easy to produce and discriminate from each
other, they likely assigned simpler symbols to frequent
sounds. Thus, although Changizi’s account may be
accurate at the alphabet level, ours may be an adequate
description at the letter level.

To further this argument, Changizi et al.’s (2006)
study did not account or control for the frequency of
occurrence of letters. As shown above, simple letters
are frequent. Correcting their data for this bias would
increase frequencies at low-complexities. This could
make their results consistent with alphabets being
influenced by motor constraints.

Appendix D

Ecological validity

Every method to study reading has its strengths and
weaknesses, and none is perfect (Haberlandt, 1994;
Perfetti, 1985). The visual spread method used here is
an efficient way of measuring noise resistance at a
relatively fine spatial scale. An hour and a half of
testing per participant was sufficient to extract all the

effects discussed above, including effects related to
single-letters, letter position, word type, and syllable
frequencies. This technique also required no specialized
equipment such as an eye tracker or a voice key.
However, caution is advised when generalizing from
our task to other reading tasks, for several reasons.

Firstly, we did not ask participants to read sentences,
and we did not measure reading comprehension.
Reading effects are generally robust across methods,
including passive-viewing tasks (e.g., fMRI experi-
ments). Nevertheless, participants may sometimes
adjust noise using visual factors, which may be
unrelated or indirectly related to reading. For example,
our results are consistent with complexity and diag-
nosticity, but could be more consistent with confus-
ability if reading performance had been measured. In
the presence of conflicting factors influencing noise,
participants may not always spread noise to improve
readability.

Secondly, participants had ample opportunity to
extract the full content of a sentence over the duration
of the study (average of 3 min spent per sentence).
Mechanisms that are time-sensitive may require
speeded-response tasks to produce measurable effects.
Moreover, our method may not capture well effects
that are dependent on surprise or uncertainty (e.g.,
when participants are asked to search for specific
information or spelling errors).

Thirdly, the stimuli were degraded. Polarity was
reversed in 12.5% of pixels, effectively changing letter
shape. However, our noise levels were intermediate
between studies using no noise and those using high
levels of noise, such that reading sentences remained
easy.

Overall, our results are consistent with the literature.
However, both the similarities and differences of results
across different methodologies can be informative.
Similar results inform of effects that are robust across
task demands and stimuli. Different results inform of
effects that are sensitive to task demands and stimulus
characteristics. By integrating results across methodol-
ogies and task demands, we can gain a better
understanding of the underlying mechanisms involved.

In particular, our method differs from many other
methods in the way the sentences were generated. A
common research method is to generate word lists that
exaggerate natural differences on few experimental
factors while minimizing differences on control factors.
These lists can nevertheless include sampling biases,
especially with regards to other factors not considered
in the selection criteria. The approach taken here
respects natural frequencies and word statistics, and
uses a statistical control instead. Our word sampling
method is representative of normal texts, but it
undersamples infrequent word types, word lengths,
letters, etc. It is thus possible that some factors above
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would be significant with a larger sample of low-
frequency words. This is not a weakness specific our
study, but rather a general concern in research when
attempting to generalize across studies using natural or
controlled samples.

Statistical techniques do offer advantages, namely:
(a) ability to control for many factors, (b) ability to
easily include low-level factors such as letter complexity

or syllabic length, and (c) higher statistical sensitivity to
effects that are normally masked by other factors also
influencing performance. Our study raises the possi-
bility that certain effects commonly attributed to word
type could in fact be due low-level factors. A follow-up
study could confirm whether word type, even con-
trolled for low-level factors, would still impact reading
performance.
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