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Identical textured disks can appear white or black depending on the luminance properties of the surrounding textured region
(B. L. Anderson & J. Winawer, 2005, 2008). This occurs when the stimulus is perceptually segmented in three layers: (1) a
uniform foreground disk, (2) a uniform background surface, and (3) a cloud-like layer that covers parts of the foreground and
background regions. However, local occlusion cues fail to predict the pattern of data observed, suggesting that in some
cases a different strategy may be adopted depending on texture characteristics (F. J. A. M. Poirier, 2009). Here, we
produced a variety of stimuli using three different textures and several luminance configurations (including the White and
inverse White configurations and the Anderson–Winawer illusion), for which participants reported the perceived
characteristics of the central disk (e.g., lightness, transparency, whether the disk was textured). The results show several
interactions between textures and luminance configurations, which we account for using mathematical models of previously
documented strategies. We show how the strategies chosen depend on an interaction between texture properties and
luminance configuration.
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Introduction

The perceived lightness of a surface depends on scene
interpretation, which integrates over several cues such as
depth relationships, lighting conditions, and transparency
(e.g., Adelson, 1993; Fine, MacLeod, & Boynton, 2003;
Heinemann, 1955; Horeman, 1963; Kelly & Grossberg,
2000; Kingdom & Moulden, 1988; Li, 2000; White, 1979,
1981). Anderson and Winawer (2005) presented a “dramatic
lightness illusion, causing identical texture patches to appear
either black or white” (p. 79), which they claimed was much
stronger than any other known lightness effect. The illusion
was produced by varying the contrast of a cloudy texture such
that a central region was at high contrast whereas the
surrounding region had a somewhat lower contrast with its
luminance shifted either toward lighter or darker values (see
Figures 1 and 2 for examples). These stimuli appear to
perceptually segregate in three layers: a figure and back-
ground each with uniform reflectance, occluded by a cloud-
like layer of variable opacity.
Both Albert (2007) and Anderson and Winawer (2005,

2008) believed that local contrast serves as a cue to

determine which stimulus parts are seen in plain view and
which parts are occluded, although they propose a slightly
different mechanism responsible for the percept. However,
Poirier (2009) found an interaction between texture and
luminance configuration that casts doubt on both Anderson
and Winawer’s and Albert’s interpretations. This interac-
tion is shown in Figure 2, which shows stimuli built using
four luminance configurations used by Anderson and
Winawer (2005), combined with either a square-wave
grating (A–D) or a cloudy texture (E–H). Square-wave
gratings emphasize occlusion cues and remove spatial
noise and texture complexity. For the square-wave grating
at high figure contrast (A–B), we interpret the occluder as
white (A) or black (B), thus the circle is seen as black (A)
or white (B). This is consistent with percepts at the same
luminance configurations for cloudy textures [compare
(A)–(B) with (E)–(F)].
In panels with low figure contrast (C–D, G–H), a

different pattern emerges. For the square-wave grating,
we interpret the occluder as dark gray (C) or light gray (D),
thus the circle is seen as light gray (C) or dark gray (D).
This is in the opposite direction as percepts at the same
luminance configurations for cloudy textures [compare
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(C)–(D) with (G)–(H)]. Indeed, instead of perceiving the
circle as light (G) or dark gray (H), the percept is of a
dark (G) and a light (H) circle at corresponding
luminance configurations. In fact, of the four stimulus
pairs [i.e., (A)–(B), (C)–(D), (E)–(F), (G)–(H)], only the
pair with low figure contrast and a square-wave grating
(C–D) is consistently perceived with the circle on the
right as darker than the circle on the left. Neither
Anderson and Winawer (2005, 2008) nor Albert (2007)
tested that condition, thus this important effect was
missed.

Thus, to fully understand the effects involved here, it is
crucial to understand possible interactions between texture
and luminance configurations, which is the focus of the
current study.

White effect

The use of cloudy textures is recent in lightness
perception research, and thus, there is not much data
collected using them. In view of the above-mentioned

Figure 1. Perceived luminance is dependent on both the texture (constant for a given column) and the luminance configuration (constant
for a given row). The textures used are: (columns 1–3) square- and sine-wave gratings, (columns 4–5) sine waves summed across
several orientations, (columns 6–10) cloudy textures with different spatial frequency spectra, and (columns 11–12) random squares
textures. The luminance configurations used correspond to luminance configurations used in: (rows 1–2) the White effect, (rows 7–10) the
inverse White effect, and (rows 3–6) the Anderson–Winawer illusion. Of all these possible combinations of texture and luminance
configurations, only a few have been used in previous experiments. Examples include the White effect (rows 1–2, columns 1 and 11), the
inverse White effect (rows 7–10, column 1), and the Anderson–Winawer illusion at the higher and lower contrast ranges they tested
(column 9, rows 3–4 and 5–6, respectively). Existing interactions between luminance configurations and textures suggest that different
strategies may be used to estimate lightness (see Poirier, 2009 and below).
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effect reversal caused by this texture, it is unclear whether
other luminance configurations would similarly be
affected by texture characteristics.
The White (1979, 1981) effect is one such stimulus that

could be affected by the strategy used to recover the
figure’s luminance. In the White effect, a gray patch is
perceived as darker (or lighter) whether it is placed on a
white (or black) part of a square-wave grating. One
common explanation is that occlusion cues place the gray
patch at the same depth as the part it occludes and that its
luminance is contrasted to that of parts perceived to be at
the same depth. The inverse White effect uses a similar
stimulus, except for using a black patch on a gray and
white grating or a white patch on a gray and black grating
(Ripamonti & Gerbino, 2001). If the cloudy texture
removes occlusion information as claimed by Poirier
(2009), then the White and/or inverse White effects could
be strongly affected by such texture changes.

Transparency

Viewing the world behind a semi-transparent surface is
highly predictable. The semi-transparent surface simply
reduces contrast and adds its own luminance. The semi-
transparent surface can never increase or invert contrast
(Anderson, 1997; Metelli, 1985; Ripamonti, Westland, &
Da Pos, 2004; Singh & Anderson, 2002).
Thus, in theory, it does not matter what the semi-

transparent surface “occludes,” as long as the background
surface includes at least two different luminance levels
to allow a reduction of contrast to be observed and
enough texture information to measure texture continu-
ity. Any textured background should support percepts of

transparency, and the perceived properties of the semi-
transparent surface should not depend on texture proper-
ties of the background.

The present study

The main goal of the current paper is to further
document how textures and luminance configurations
interact. We include every combination of 3 textures and
30 luminance configurations, some of which are displayed
in Figure 1 (see below and Methods section for details).
For each of these 90 stimuli, we measured perceived
luminance, transparency, and “texturedness” (i.e., whether
participants perceived the circle as having a homogenous
surface or as having its own texture) of the circle. We then
model biologically plausible perceptual strategies that
participants may be using to resolve the percepts. The
model uses a single set of parameters to account for
percepts across the 90 conditions tested. Finally, by
removing one strategy at a time from the model, we show
which strategies are responsible for the effects in each
condition.

Figure 3. The Anderson–Winawer luminance configurations
applied to the three different textures used in this study. Shown
here are sample stimuli varied along three dimensions: (1) figure
contrast varied from high-contrast (left) to low-contrast figures
(right), (2) background mean luminance was lighter or darker (top
or bottom row for each texture, respectively), and (3) texture was
either the original cloudy texture (A), the thresholded texture (B),
or the two-tone texture (C).

Figure 2. A demonstration that lightness depends on texture
characteristics. The Anderson–Winawer luminance configuration
applied to two different textures, shown for high-contrast (row 1)
and low-contrast figures (row 2). For the square-wave texture (A–D),
the direction of the effect clearly reverses at lower figure contrast
[compare (A)–(B) with (C)–(D)]. For more complex textures (E–H), a
reversal occurs especially with moving textures as used here
(compare (E)–(F) with (G)–(H); see also Poirier, 2009).
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The 90 conditions are composed of every combination
of the 3 textures (cloudy, thresholded cloudy, and two-
tone) with 30 luminance configurations (2 gray-circles
control conditions, 2 inverted-contrast-circles control con-
ditions, 6 White and inverse White conditions, 4 trans-
parency conditions, and 16 conditions including and
extending those used by Anderson & Winawer, 2005,
2008).
This study expands on Poirier’s (2009) study by

(1) adding the thresholded texture, i.e., a cloudy texture
with pixels either black or white to sharpen edge informa-
tion (see Figure 3), (2) measuring transparency as well as
up to two perceived luminances, i.e., one luminance if the
circle is perceived as homogeneous or two luminances to
indicate the luminance range perceived in the texture if
the circle is perceived as textured, (3) including 30
luminance configurations rather than just 4 (see Table 1),
and (4) providing a model of several mechanisms known
to influence perceived lightness to account for the effects.
Although 30 luminance configurations may seem exces-
sive, they are important to include to validate the various
measures used here, as well as to allow a measure of

relatively pure effects such that a comparison can be made
when these effects are then combined.

Summary of results

Results and model show many texture-dependent
effects: (1) For solid gray and inverted-contrast control
conditions, participants accurately reported the luminance
(s) of the stimulus, although texture complexity increased
transparency report rates and decreased the perceived
lightness range. (2) Texture complexity greatly increased
the White effect and increased transparency report rates
for both White and inverted White luminance configu-
rations. (3) Transparency conditions were largely unaf-
fected by texture. (4) The Anderson–Winawer illusion
showed a reversal of the direction of its effect at
luminance configurations producing T-junctions, and
simplifying the texture decreased the transparency report
rates for those same conditions. (5) The Anderson–
Winawer conditions at intermediate figure contrasts (i.e.,
70.7%–84.3%) showed increased incidence of binomial

Condition Details, figure contrast CA CB SA SB Figure

Gray (homogeneous) Light background 33.0 33.0 98.6 14.9 –

Dark background 33.0 33.0 6.2 60.8 –

White White occluder 98.6 33.0 98.6 6.2 1
Black occluder 6.2 33.0 6.2 98.6 1

Inverse White Black figure, white occluder 98.6 14.9 98.6 33.0 1
Black figure, gray occluder 33.0 14.9 33.0 98.6 1
White figure, black occluder 6.2 60.8 6.2 33.0 1
White figure, gray occluder 33.0 60.8 33.0 6.2 1

Transparency 17.3% 39.0 27.5 98.6 6.2 –

48.2% 52.9 18.5 98.6 6.2 –

70.7% 69.3 11.9 98.6 6.2 –

84.3% 88.2 7.5 98.6 6.2 –

Anderson–Winawer, light background 17.3% 39.0 27.5 98.6 14.9 –

33.6% 45.7 22.7 98.6 14.9 –

48.2% 52.9 18.5 98.6 14.9 –

60.6% 60.8 14.9 98.6 14.9 1, 2, 3, 4
70.7% 69.3 11.9 98.6 14.9 1, 3
78.5% 78.4 9.4 98.6 14.9 1, 3
84.3% 88.2 7.5 98.6 14.9 1, 3
88.2% 98.6 6.2 98.6 14.9 1, 2, 3

Inverted contrast Light background, 88.2% 6.2 98.6 98.6 14.9 –

Dark background, 88.2% 98.6 6.2 6.2 60.8 –

Table 1. Luminance configurations used in the experiment (in cd/m2). Percent values indicate the figure’s Michelson contrast when
applicable, based on physical luminance ranges. Values for the Anderson–Winawer on dark background conditions are not shown;
however, the same figure values were used as with the light background conditions, with the background changed to SA = 6.2 cd/m2 and
SB = 60.8 cd/m2. Background contrasts are 81.5% for the dark background, 73.7% for the light background, and 88.2% for backgrounds
used in transparency conditions. Gray circles were shown on either the dark or light background. The last column (Figure) tells in which
figure(s) examples of this luminance configuration can be found.
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response distributions as texture was simplified, indicating
bistable (or perhaps even tristable) percepts. (6) Percepts
for the thresholded texture were generally in between
results for the cloudy texture and for the two-tone texture.
These results suggest that when textures become complex,
occlusion cues become unreliable for depth segregation,
thus forcing the visual system to rely on a simpler
strategy.

Methods

Participants

Eight participants volunteered (3 males and 5 females),
which included the first author, as well as university
undergraduate and graduate students. Their vision was
normal or corrected to normal.

Apparatus

Testing and data collection was done on a PC (P4 3
GHz) and a calibrated CRT monitor set to a resolution of
800 � 600 pixels and a refresh rate of 75 Hz. Responses
were recorded via mouse button presses. Viewing distance
was 68.5 cm, where the stimulus subtended a 16- � 16-
area (not including response bars, see below).

Procedure

Stimuli

Three types of textures were created. The first texture
was a grayscale noise with 1/f 4 power spectrum, hence-
forth named the “cloudy” texture. The second was a
thresholded and slightly blurred version of the first,
henceforth named the “thresholded” texture. Thresholding
was at the median value, followed by blurring by a
Gaussian filter to reduce aliasing (see Figures 2B and 3 for
examples) using

Gi;j ¼ e
jði2þj2Þ

A2 ; ð1Þ

where A = 0.1-. The blur removed aliasing, but otherwise
was not easily perceptible. The thresholded texture
contains much sharper edges than the cloudy texture, thus
creating clear T-junctions and X-junctions. Clear junc-
tions are important occlusion cues to help establish depth
relationships, thus the thresholded texture was expected to
produce results more consistent with the occlusion theory.

The third texture was a two-tone texture, consisting of
zeros in one half and ones in the other half. This third
texture has the sharpest edge, as well as very simple
physical characteristics. These three textures are similar to
those used by Anderson and Winawer (2008).
These textures were normalized to a range of 0–1, and

then the luminance range of that texture was modified
independently within a circular region (5- of diameter),
henceforth named “center” (C), and its surrounding
region, henceforth named “surround” (S), according to

Cij ¼ TijðCAj CBÞ þ CB and Sij ¼ TijðSAj SBÞ þ SB;

ð2Þ

where subscripts i and j indicate position on the image
(omitted henceforth for simplicity), and the “luminance
configuration” is defined as the constant values of CA, CB,
SA, and SB. The luminance configuration thus defines the
minimum, maximum, and range for each region (e.g.,
min value for center = min(CA, CB), range for center
region = jCAj CBj), as well as the luminance change
across the center–surround boundary (from jCAj SAj to
jCBj SBj). The four constants forming the luminance
configuration can be set to match luminance configura-
tions normally used for the White effect, the inverse White
effect, or the Anderson–Winawer illusion (see Table 1;
sample stimuli are shown in Figures 1–4). Using this
definition, any texture can be combined with any

Figure 4. A sample stimulus as presented during the experiment,
corresponding to the thresholded texture with one of the
Anderson–Winawer luminance configurations (60.6% figure
contrast, light background). The response bars on the sides are
also shown. Participants indicated the perceived luminance(s) on
the white-to-black bar on the left and transparency on the textured
bar on the right. A small white bar indicated their responses,
which participants could adjust before passing to the next
stimulus. In this example, the participant reported perceiving the
circle as light gray and opaque.
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luminance configuration to create new stimuli. Note that
changing a texture for a given luminance configuration
can change the effect, thus combining a cloudy texture
with the luminance configuration of the White effect may
not produce the White effect. For this reason, we use the
terms “texture” and “luminance configuration” to describe
texture and the luminance ranges used to construct the
stimulus, and the terms “effect” or “illusion” to describe
the experienced perceptual biases as measured through
the experiment.
The luminance configurations used here included

luminance configurations used previously, i.e., in (1) the
White effect, (2) the inverted White effect, (3) the
Anderson–Winawer illusion, as well as (4) its gray control
condition and (5) its rotation control (here, we used
contrast inversion instead). We also included conditions
extending the Anderson–Winawer illusion to lower figure
contrast values and conditions to measure transparency
percepts (i.e., parameters chosen consistent with trans-
parency where the occluder reduces contrast, but other-
wise does not produce a significant shift in physical
luminance).

The cloudy and thresholded textures moved at 2.2-/s, at
23.6- upward from left motion. This reduced the risks that
most pixels along the center–surround border would be
confined to a range of possible values and, over time,
produced a variety of edge properties. The circle remained
centered in the stimulus. The two-tone texture remained
motionless.

Task

Participants were presented with a stimulus with a
combination of a given luminance configuration and
texture, and they were told to report perceived properties
of the figure (i.e., the physical properties of the central
circle) on response bars on the sides of the stimulus (see
Figure 4). On the left, on a bar ranging from white to
black, they indicated the perceived lightness of the figure
using the mouse. If they perceived the figure to contain a
texture of its own, then they indicated both the lightest
and darkest parts of that texture using separate mouse
buttons. On the right, on a bar ranging from opaque

Figure 5. Luminance (A–B) and transparency estimates (C–D) for gray and inverted-contrast conditions for cloudy textures (CT),
thresholded textures (TT), and two-tone textures (2T). Embedded pictograms depict the luminance configuration associated with the data
shown. (A–B) Perceived lightness is shown in a line plot (A; symbols indicate mean and SEM of reported lightness, in cd/m2) along with
simulation results (dashed lines). The same data are plotted again as a histogram (B; darker for more responses), with every condition
plotted at a different X-axis position for clarity. (C–D) Transparency report rates (black) and percent perceived transparency averaged over
only responses where transparency was reported (green) or over all responses (blue). Results show that: (1) responses were only
bimodally distributed when contrast was inverted, showing that in all other cases participants did not report that the central region was
textured, (2) reports of perceived transparency were rare (G20% for most conditions), (3) perceived lightness was close to physical
lightness, with a small bias due to surround contrast for gray circles, and (4) there was a small reduction of the perceived lightness range
with increased texture complexity for the inverted conditions.

Journal of Vision (2012) 12(1):21, 1–22 Poirier, Gosselin, & Arguin 6



(shown as a gray area occluding the texture) to transparent
(shown as the unmodified high-contrast texture), they
indicated the perceived transparency of the figure (if any).
Participants could adjust their responses until satisfied and
press the space bar to proceed to the next trial.
Participants did practice trials until they felt comfortable
with the task. Each condition was repeated 5 times per
participant over the course of the experiment.

Analysis: Pre-processing

Participants could report one or two lightness judgments
per trial. They were instructed to report two lightness
judgments when they perceived the center as a textured
object, in which case they had to report the highest and
lower lightness values contained in the circle, using
separate mouse buttons. They did so predominantly in
inverted-contrast conditions (see Figures 5A and 5B),
where lightness reports were bimodally distributed.
However, occasionally they only reported one lightness
value in these same conditions. Moreover, participants
also produced bimodal distributions of perceived lightness
in some other conditions (e.g., Anderson–Winawer con-
ditions), in which they reported that the percept alternated
between several scene interpretations. That is, even
though they produced a single response per trial, these
responses were bimodally distributed. Because of these
complications, simple averages are not always representa-
tive of actual responses or percepts of participants.
In an effort to ensure that the results presented here

reflect the participants’ responses, we have pre-processed
the data by (1) establishing which conditions had bimodal
distributions and (2) split the bimodal distributions into
two distributions for separate analysis. Bimodality was
assessed by eye and the threshold was also selected by
eye. In all cases, the distributions are plotted alongside the
data plots, including the threshold value used to separate
the distributions. Thus, the reader can readily see how
responses were analyzed.

Analysis: Statistics

In most cases, reported analyses used factorial repeated-
measures ANOVAs. In some rare cases, however, partic-
ipants’ responses were split into two categories. This
happens, for example, when participants see a textured
region as in the inverted-contrast conditions. This also
happens when the percept could alternate between several
alternatives, such as was the case in some of the Anderson–
Winawer conditions using two-tone textures. The resulting
responses were not always bimodal or evenly distributed
between the high and low, thus the analyses had to be
adapted to circumvent unequal sample sizes. We solved
this problem by using between-participants factorial

ANOVAs instead in those cases. The type of analysis used
can be inferred from the degrees of freedom for the error
term, which is dividable by 7 for within-participants or by
11 for between-participants analyses.
Some effects receive less attention in the Results

section, such as the main effect of texture on lightness
perception. This is because we believe that these effects
could disappear with only relatively small changes to the
luminance parameters used in constructing the stimuli.
Indeed, the nonlinear mapping chosen produced textures
that seemed to be more continuous and provided good
contrasts. between center and surround. However, these
parameters could have created some imbalances between
darker and lighter areas of the textures, especially after
perceptual nonlinearities are taken into consideration.

Analysis: Modeling

Throughout the analysis, we refer to modeling done to
explain the results. The model was developed to (1) provide
a concise account of the data and (2) verify that the account
proposed generates correct predictions. Moreover, a single
set of parameters was used across the full data set. The
details of this model are discussed after the results.
However, the broad strokes of the model are introduced
here.
The guiding principles were (1) include only previously

documented strategies, (2) use only mechanisms that can
easily extract the information from the current class of
stimuli, (3) restrict effects by textures or luminance
configurations only when this cannot be avoided, and
(4) combine effects linearly to produce one or two
measures of perceived lightness and one measure of
likelihood of perceived transparency.
The model takes as input the luminance configurations,

that is, the luminance values used to modulate the texture
luminances in the center (i.e., CA, CB) and surround
regions (SA, SB), as well as an indicator of texture
complexity ("). All other properties are derived using
these five values. These five parameters are easy to extract
via careful examination of the stimulus or via simple
algorithms, at least for the stimuli used in the present
study.
The model predicts perceived lightness based on a

combination of effects, including occlusion, lightness
contrast, and transparency. The model does that in several
steps: (1) assess which lightness effects contribute in a given
condition, based on various selection rules, (2) compute a
measure of bias for each eligible lightness effect, and
(3) combine the biases using a weighted sum, with a single
set of weights adjusted to maximize the fit with data over all
90 conditions.
The three main factors influencing perceived lightness

are (1) occlusion, that is, when a part of the stimulus is
perceived as occluded, only the part seen as unoccluded is
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used to judge perceived lightness, (2) most likely pixel,
that is, when the center region is on average lighter (or
darker) than the surround region, the lightest (or darkest)
pixel is used as an estimate of lightness, and (3) trans-
parency, that is, perceived lightness is predicted by trans-
parency rules after evaluation of opacity. The first two
factors often but not always produce the same predicted
lightness. In cases where the two factors produce conflict-
ing results, we can see which factor accounts best for the
results and, thus, infer the selection rules governing
strategy selection.
Other effects are also included in the model. We leave

the discussion of these effects to the Modeling section,
because they contribute relatively little to lightness
estimates, involve already-documented effects, and
unnecessarily complicate the understanding of the major
factors influencing lightness perception in the range of
stimuli presented here.

Results

Control conditions

Anderson and Winawer (2005) used homogeneous gray
figures and rotated texture figures as control conditions
because these controls did not produce their illusion. We
used the same homogeneous gray figures but replaced the
rotated texture with an inverted-contrast texture, which
produces the same control effect but maintains the same
motion direction.
In our data, the reported average lightness in the gray

control conditions is fairly close to the actual physical
lightness, as was the case in Anderson and Winawer. For
the inverted-contrast figure condition, participants
reported seeing a textured center and reported the highest
and lowest lightness of that texture, which differed
drastically from each other (F(1,11) = 2334, p G 0.001).
Thus, the inverted-contrast conditions reflect both the
average lightness and the lightness range perceived by
participants. These results parallel those of Anderson and
Winawer, except that in the inverted conditions, our
participants reported both the maximum and the minimum
lightness instead of only the average lightness.
Biases due to background luminance configurations or

textures are relatively small but systematic. First, gray
centers appear slightly lighter (or darker) when placed on
darker (or lighter) surrounds (F(1,7) = 12.2, p = 0.01), an
effect that is not found in the inverted-contrast conditions
(F(1,11) = 0.252, p 9 0.62). Second, in the inverted-
contrast conditions, participants reported high and low
lightnesses that were clearly different from each other
(F(1,11) = 2334, p G 0.001). The perceived figure
lightness range is slightly increased as texture complexity
decreases, i.e., participants reported a slightly larger

lightness range for the two-tone texture (least complex)
than for the cloudy texture (most complex; F(2,22) = 16.4,
p G 0.001). In addition, texture had an effect on perceived
luminance for both gray (F(2,14) = 9.57, p = 0.002) and
inverted-contrast controls (F(2,22) = 6.843, p = 0.005).
All other lightness effects and interactions were not
statistically significant (ps 9 0.15).
Transparency report rates were very low, i.e., partic-

ipants usually reported gray and inverted-contrast circles
as opaque. Thus, analyses showed no effects (all ps 9
0.21), except for a texture effect for inverted-contrast
conditions, where participants tended to report seeing
semi-transparent circles more often as texture complexity
increased (F(2,14) = 4.04, p = 0.041).
Control conditions thus show mild texture-related

changes: (1) a reduction of perceived lightness range for
complex textures and (2) an increase in transparency
report rates for the inverted-contrast range as texture
complexity increases.

White effect and inverted White effect

The White effect is often shown using a stimulus where
the background is a black and white square grating, with
2 gray rectangular figures, one placed on the white area
and another placed on the black area. Even though both
gray figures have the exact same physical luminance, the
one placed over the white area appears darker than the one
placed over the black area (White, 1979, 1981). The
Inverted White effect uses the same display, except that
the stimulus is either a white figure on a gray and black
background or a black figure on a white and gray
background. Under inverted White conditions, the White
effect persists but is reduced in strength (Ripamonti &
Gerbino, 2001).
The White effect was replicated here for the two-tone

texture (see Figure 6A; F(1,7) = 7.243, p = 0.031), which
is similar to the square-wave texture used by White.
However, texture significantly increased the effect of
background (F(2,14) = 17.3, p = G.001), where the
“White” effect was greatly amplified with the cloudy and
thresholded textures, with the amplification in the same
direction as the White effect, which averages across
textures to a significant bias on perceived lightness in
the same direction as the White effect (F(1,7) = 85.7, p G
0.001). There was also a main effect of texture (F(2,14) =
8.46, p = 0.004).
The inverted White effect was also replicated (F(1,7) =

13.6, p = 0.008); however, there was no amplification of
the inverted White effect due to texture (F(2,14) G 0.21,
p 9 0.81). For the inverted White conditions, there was
also an effect of texture (F(2,14) = 6.37, p = 0.011), of
center luminance (F(1,7) = 148.9, p G 0.001), and an
interaction between texture and center luminance (F(2,14) =
8.5, p = 0.004). All other effects were not significant (all
Fs G 1.96, all ps 9 0.2).
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Transparency report rates increased with texture com-
plexity for both the White (F(1,7) = 14.95, p G 0.001) and
inverse White effects (F(2,14) = 5.466, p = 0.018). That is,
for both luminance configurations, transparency rates were
low in the two-tone texture conditions, high in the cloudy
texture conditions, and moderate in the thresholded
texture conditions. For the White conditions, there was
also an effect of background (F(1,7) = 8.58, p = 0.022)
and an interaction between texture and background
(F(2,14) = 9.9, p = 0.002). For the inverse White
conditions, none of the other effects or interactions were
significant (all Fs G 2.066, all ps 9 0.194).
These effects are readily understood when combined

with modeling results. The amplification in the White
effect with increased texture complexity co-occurs with an
increase in transparency report rates. In particular, in
increasingly complex textures, the “gray” area becomes
effortful to isolate. Thus, participants shift from compar-
ing the gray area (in two-tone textures) to comparing the
whole central region (in cloudy textures), causing the
amplification of the effect. The amplification is not seen in
the Inverted White effect because, as discussed in the
Occlusion vs. MLP section, both strategies produce
exactly the same predicted perceived lightness within
those luminance configurations. That is, a shift of strategy,
if it occurs, does not produce a measurable lightness effect

in the inverted White conditions. The common increase in
frequency of reported transparency with texture complexity
indicates that this shift in strategy might be occurring
nevertheless.

Transparency

Metelli (1985; see also Ripamonti et al., 2004)
described several conditions for perception of transpar-
ency to occur. For example, a semi-transparent surface
will (1) reduce luminance range and (2) preserve contrast
relationships. Thus, if a surface appears to increase
contrast or change contrast relationships, it will be
interpreted as something else than a semi-transparent
surface. Our experiment included many conditions con-
sistent with Metelli’s rules: the transparency conditions, as
well as the Anderson–Winawer conditions except for
figure contrast of 88.2% for the light background or below
figure contrast of 70.7% for the dark background. The
inverted-contrast control condition breaks Metelli’s rules.
In conditions that break Metelli’s rules, transparency

report rate was less than 20% (e.g., both control
conditions, see Figure 5). However, in conditions clearly
consistent with percepts of transparency, transparency
report rates were much higher (960% in 11 of 12

Figure 6. Luminance (A–C) and transparency estimates (D–F) for White (A, D) and Inverted White conditions (B, E) for the cloudy texture
(CT), the thresholded texture (TT), and the two-tone texture (2T). The histograms for the same conditions (C, F) are also shown. Results
show that: (1) texture complexity greatly increased the “White effect” in the White conditions, (2) texture complexity had no effect on
perceived lightness in the Inverted White conditions, and (3) more complex textures were more likely to be perceived as transparent for
both White and inverted White luminance configurations. The increased “White effect” is likely due to a change in strategy. See Figure 5
for legend and the main text for details.
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conditions in Figure 7; Q60% in 18 of 18 conditions of
Figure 8 with figure contrasts of 48.2% or less). Thus,
Metelli’s rules at first glance appear to account for most of
the reports of transparency.
For transparency conditions as well as Anderson–

Winawer conditions with figure contrasts ranging from
17.3% to 48.2% (Figures 7 and 8), texture effects were not
significant (including interactions; all Fs G 1.71, ps 9
0.14). Perceived lightness increased with figure contrast
for both transparency (F(3,21) = 10.2, p G 0.001) and
Anderson–Winawer conditions (F(2,14) = 11.3, p =
0.001). For Anderson–Winawer conditions, perceived
lightness increased when the background was darker
(F(1,7) = 28.4, p = 0.001), but there was no interaction

between figure and background properties (F(2,14) =
0.269, p 9 0.76). Thus, based on perceived lightness
results alone, one might be tempted to conclude that
transparency is based on additive effects of figure and
background luminance properties and independent of
texture.
However, analysis of transparency report rates shows

that Metelli’s rules are insufficient to explain transparency
perception. Indeed, in the transparency conditions, trans-
parency report rates are somewhat dependent on texture
(F(2,14) = 3.71, p = 0.051) with the thresholded texture
perceived as transparent more often. Transparency report
rates decreased with figure contrast (F(3,21) = 3.71, p =
0.028), and there was an interaction between figure

Figure 7. Luminance (A, C–E) and transparency estimates (B, F–H) for transparency conditions for the cloudy texture (CT; A–C, F), the
thresholded texture (TT; A–B, D, G), and the two-tone texture (2T; A–B, E, H). Results show that: (1) perceived lightness is nearly invariant
with texture and center contrast range, and (2) perceived transparency peaks at low levels of center contrasts, i.e., a high-contrast center
is more likely to be reported as a partly occluded opaque surface. See Figure 8 that also includes transparency conditions, Figure 5 for
legend, and the main text for details.
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Figure 8. Luminance (A–C, G–I) and transparency estimates (D–F, J–L) for Anderson–Winawer luminance configuration conditions for the
cloudy texture (left), the thresholded texture (middle), and the two-tone texture (right). Results show that: (1) changing the texture causes
a reversal of the perceived lightness only for the 60.6% figure contrast condition (isolated by two lines in (A)–(F); see also Figure 9B),
(2) changing the texture changes the rates of bimodal distributions for the 70.7%–84.3% figure contrast conditions, (3) a sudden drop
of transparency report rates occur with the 60.6% and 88.2% figure contrast conditions, i.e., the only two conditions reliably producing
T-junctions instead of X-junctions, and (4) the sudden drop of transparency report rates is largest for two-tone textures and absent for
cloudy textures, despite both textures producing similar X- and T-junctions. See Figure 5 for legend and the main text for details.
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contrast and texture (F(6,42) = 3.02, p = 0.015). Texture
effects on perceived transparency rates are unexplained by
Metelli’s rules and differ from the texture complexity
effects generally seen with other luminance configurations
within this study.
In the limited 17.3%–48.2% figure contrast range of the

Anderson–Winawer conditions, background luminance
was not significant overall (F(1,7) = 1.045, p 9 0.34),
although it did interact with texture (F(2,14) = 6.285, p =
0.011), and the interaction between figure contrast and
background luminance was nearly significant (F(2,14) =
3.677, p = 0.052). All other effects and interactions were
not significant (all Fs G 1.411, all ps 9 0.25).
Overall, for both transparency and Anderson–Winawer

conditions, the effects of background, figure contrast, and
texture were relatively small compared to effects found
with other luminance configurations (e.g.,White, Anderson–
Winawer).

Anderson–Winawer conditions

We replicated Anderson and Winawer’s (2005, 2008)
experiment, in which the surround texture could be light

or dark, and figure contrast varied from high to medium
contrasts (see Figures 8 and 9).
We added an additional 3 levels of figure contrast at the

low-contrast end (see Figure 8). Because the results of
these conditions are consistent with those of transparency
conditions, they were discussed in greater detail separately
in the previous section. However, we include a summary
in the current section as well to understand the full
progression and the uniqueness of the 60.6% figure
contrast condition.
Anderson and Winawer’s results are replicated when

using a cloudy texture similar to the one they used.
Overall, perceived lightness was near the center’s lightest
(or darkest) pixel when the center was lighter (or darker)
than the background, thus showing a robust background
effect (F(1,7) = 89.8, p G 0.001). However, except for a
lack of interaction between texture and background
luminance (F(2,14) = 0.583, p 9 0.57), all effects and
interactions of figure contrast, background luminance, and
texture were significant (all Fs 9 3.9, all ps G 0.044).
Similarly, transparency reports included several complex
effects. Except for no main effects of texture or back-
ground contrast (Fs G 0.45, ps 9 0.52), all effects and
interactions of figure contrast, background luminance, and

Figure 9. Luminance (A–B) and transparency estimates (C–D) for Anderson–Winawer luminance configuration conditions for the cloudy
texture (CT), the thresholded texture (TT), and the two-tone texture (2T), for the high-contrast center (88.2%; A, C) and medium-contrast
center conditions (60.6%; B, D). Results show that: (1) perceived lightness is texture invariant for the 88.2% condition, (2) perceived
lightness reverses as texture complexity decreases for the 60.6% condition, and (3) simplifying the texture reduces the transparency
report rates for both conditions. These results replicate the findings of Poirier (2009), suggesting a strategy shift (see Modeling section for
details). Moreover, the common texture-dependent change in transparency report rates suggests that the same strategy shift occurs in
both luminance configurations. See Figure 5 for legend and the main text for details.
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texture were significant (all Fs 9 2.15, all ps G 0.015).
Reports of transparency follow one of two trends depend-
ing on texture: (1) they gradually reduce as figure contrast
increases for the cloudy texture, or (2) they gradually
reduce except for two pronounced dips at specific figure
contrasts (i.e., 60.6% and 88.2% figure contrasts) for the
two-tone texture. Reports of transparency for the thresh-
olded texture are a mixture (average) of the two trends,
with the dips not as pronounced. These two unique
conditions are those producing T-junctions. It therefore
makes sense to use these two conditions as separators, to
decompose the data set into a set of restricted analyses.
To clarify these effects, figure contrast conditions were

decomposed in three subsets: (1) 17.3%–48.2%, analyzed
in detail in the Transparency section, (2) the two special
conditions that produce T-junctions, i.e., 60.6% and
88.2%, and (3) the conditions with intermediate figure
contrasts, i.e., 70.7%–84.3%. In other words, three
separate analyses were conducted, corresponding to
figure contrasts (1) below conditions producing T-junctions,
(2) only including conditions producing T-junctions, or
(3) between conditions producing T-junctions.
The figure contrast range below 60.6% was analyzed

above (see Transparency section above), and the main
findings were (1) perceived lightness is based on additive
effects of figure and background luminance properties and
independent of texture at least in this limited figure
contrast range, (2) transparency report rates were mainly
independent of figure contrast, background luminance, and
texture over the range studied, and (3) these effects were
relatively small.
The 60.6% and 88.2% figure contrast conditions are

the only two conditions associated with a sudden drop of
reported transparency for the two-tone texture (see
Figure 8F). All effects and interactions between texture,
contrast, and background were significant when only
sampling at these two figure contrasts (all Fs 9 6.6, all
ps G 0.008), except the interaction between texture and
background (F(2,14) = 1.125, p = 0.35). In particular, the
three-way interaction was significant (F(2,14) = 6.7, p =
0.009). At the 60.6% figure contrast, thresholding the
texture removes the background effect (see Figure 8B),
and further simplifying it into a two-tone texture reverses
the background effect (F(2,14) = 21.3, p G 0.001; see
Figure 8C compared to Figure 8A; see also Figure 9B; this
reversal of the effect was originally shown by Poirier,
2009). At 88.2% figure contrast, changing the texture does
not produce a reversal effect (F(2,14) = 2.06, p = 0.164;
see Figure 9A), despite the transparency report rate
dropping suddenly for the two-tone texture (see Figures 8F
and 9C). Thus, it seems that both of these conditions are
associated with a percept that is different from those at
other figure contrasts, a perceptual difference that is readily
measured via transparency reports, yet can only be shown
via lightness measurements for the 60.6% figure contrast
condition.

The intermediate figure contrasts (i.e., 70.7%–84.3%
figure contrast conditions) produced stimuli that were
interpreted least reliably. Indeed, these conditions were
associated with an increased occurrence of bimodality in
luminance reports, especially for the two-tone texture but
also, to some extent, for the thresholded texture as well.
These intermediate contrasts are characterized by a figure
luminance range that exceeds the background luminance
range in one direction only. That is, some center pixels are
either brighter or darker than all surround pixels, depend-
ing on background properties. Unlike the 60.6% and
88.2% figure contrasts, the luminance of the center and
surround textures do not match where they are at their
maximum or minimum (i.e., CA m SA and CB m SB). The
resulting stimuli are difficult for participants to classify
reliably. Indeed, according to subjective reports after data
collection, the same stimulus could be perceived as a light
moon or as a dark moon, and the percept could switch
during a trial. Such bimodal responses are more common
for simpler textures. The ambiguity arises because, for
these stimuli, it is unclear whether the occluder itself is
light or dark. This ambiguity translates into an ambiguity
regarding the moon’s lightness. After averaging the low
and high responses (when data were bimodal), there were
significant effects of texture (F(2,14) = 7.321, p = 0.007)
and figure contrast (F(1,14) = 47.104, p = G 0.001), as
well as significant interactions of these two factors with
background luminance (F(4,28) = 3.433, p = 0.021 and
F(2,14) = 28.369, p G 0.001, respectively). Other effects
were not significant (Fs G 1.76, ps 9 0.165). These effects
are difficult to interpret in light of bimodal distributions.
Transparency rates were independent of these factors and
their interactions (all Fs G 1.6, ps 9 0.2). Note that stimuli
at figure contrasts of 70.7% to 84.3% are more difficult to
classify for the light background than for the dark
background, at least for the thresholded texture. This is
because the dark background has a lower contrast than the
light background, thus the figure contrast can more easily
exceed it. Once the figure contrast exceeds the back-
ground contrast, transparency is no longer a consistent
interpretation.

Modeling

The main challenge to theories of luminance perception
is to account for lightness illusions, given that they are
differentially affected by manipulations of luminance,
stimulus configuration, aspect ratio, size, etc. (see Blakeslee
& McCourt, 2004; Ripamonti & Gerbino, 2001; Spehar,
Clifford, & Agostini, 2002). This is especially true when
considering the novel stimuli introduced by Anderson and
Winawer (2005, 2008; see also Anderson & Khang, 2010),
which would be difficult to model by many existing
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lightness models. This problem is exacerbated by the fact
that some of these effects are dependent on texture
characteristics, as demonstrated here and by Poirier (2009).
The model included below is a concise description of

the current data set using documented effects. We first
describe how the percentage of perceived transparency
was modeled and then describe how perceived luminance
was modeled.

Common parameters

Some parameters influence percepts in many strategies;
thus, they will be discussed first. These parameters are
texture continuity (!) and texture complexity (").
Texture continuity (!) serves as a cue for surface

segmentation and edge assignment and is defined as 1 if
the luminance values on each side of the center–surround
edge are strongly positively correlated or 0 otherwise. In
our stimuli, this simplification is sufficient:

! ¼
1 if ðCA jCBÞðSAj SBÞ 9 0

0 otherwise

;

8<
:

ð3Þ
where a texture is perceived as discontinuous (i.e., ! = 0)
when luminance variations on either side of the edge are
negatively correlated together or if either the center or
surround region is not textured. Given that our stimuli are
either strongly positively correlated (in most cases),
uncorrelated (gray control), or strongly negatively corre-
lated (contrast-inverted), this definition is sufficient for the
class of stimuli used here. This definition could be
extended to include a variety of cues that signal
discontinuities (e.g., changes in texture, binocular depth,
color, motion) and could be improved further for general
use by determining how much correlation is necessary for
texture continuity to be perceived.
Texture complexity (") serves as an indicator of how

“perceptually complex” a texture is. For the purposes of
the current paper, the following simplification is sufficient:

" ¼

1 for cloudy

0:5 for thresholded

0 for twojtone

:

8>>>><
>>>>:

ð4Þ

This equation provides an approximation of how difficult
information such as T-junctions or X-junctions are to
retrieve from stimuli such as those used in the current
paper.
If the central area of a stimulus had its luminance range

contained within the range of luminances of the surround

area, then the resulting stimulus was consistent with
Metelli’s rule of reduced contrast. These conditions are
captured by the semi-transparency indicator (+):

+ ¼
1 if ðmaxðCÞ G maxðSÞÞ and ðminðCÞ 9 minðSÞÞ

0 otherwise

:

8<
:

ð5Þ

Percent transparency

Here, we model the frequency of transparency percepts,
not the degree of transparency perceived. Thus, whether a
stimulus is reported as almost opaque or almost com-
pletely transparent does not matter in this measure, as long
as it is not reported as completely opaque.
Cloudy textures provide the simplest case, for which

percent reports of transparency (T%) were well described
as: (1) almost always opaque (T% , 0) if the center region
is a homogeneous gray region (i.e., CA = CB), (2) usually
opaque (T% , Tmin) if the texture in the center region
appears discontinuous with the texture in the surround
region, as is the case when contrast is inverted (i.e., ! = 0),
or (3) with frequency of “opaque” responses dependent on
the contrast of the center region in all other cases, where a
higher contrast center region is less likely to be perceived
as transparent. These influences can be summarized as

T% ¼ 0 if CA ¼ CB; otherwise; ð6Þ

T% ¼ Tmin þ Tmax j Tminð Þ! 1j
jCA j CBj

Lwhite

� �
; ð7Þ

where Tmin and Tmax are free parameters describing the
range of transparency percent reports, and Lwhite is a
constant equal to the maximum luminance presented
during the experiment. The maximum luminance was
always present in the stimuli at least in the response bars.
Two-tone textures follow the same general pattern but

with some notable differences: The stimuli used in the
White, inverted White, and both the high- and medium-
contrast figure versions of the Anderson–Winawer were
rarely reported as transparent, much less than predicted by
Equations 6–7. The common aspect of all these conditions
is that they produced T-junctions rather than X-junctions
and, thus, provided salient occlusion cues. This is captured
by modifying Equation 7 by adding a term that captures
the presence of T-junctions:

T% ¼ Tmin þ Tmax j Tminð Þ! 1 j
jCA j CBj

Lwhite

� �
1 j Tjunctions
� �

;

ð8Þ
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where

Tjunctions ¼ ðCA ¼ SAÞ or ðCB ¼ SBÞ; ð9Þ

that is, transparency reports were the same as with the cloudy
textures, except for stimuli that contained a T-junction, in
which case transparency was rarely reported (i.e., with a
T-junction present, the term (1 j Tjunctions) equals 0, thus
T% = Tmin). Transparency reports for the thresholded
textures follow the same pattern as that of the two-tone
texture and is thus captured by Equation 8.

Perceived luminance

The simplest estimate of surface lightness is its average
luminance, i.e.,

LV0 ¼ C
� ¼ ðCA þ CBÞ=2; ð10Þ

which is valid in the absence of any contributions from
corrective mechanisms, segregation mechanisms, or other
influences. We used midpoint luminance instead of
average for simplicity, which does not affect significantly
the predictions for the stimuli presented here because
luminance distributions were not systematically skewed.
The more important factors influencing lightness reports

in the above stimulus conditions are due to the interpre-
tation of the stimulus, i.e., is it a transparent surface above
a textured background, an opaque surface behind a
variable-opacity occluder, or a circle with a texture of its
own? The factors involved in stimulus interpretation are
discussed below. All influences on lightness discussed
below are expressed as deviations to the average lumi-
nance (L0V). If a formula below returns a value of 0, it
means that this factor has no influence on the perceived
luminance in the given condition. Table 2 provides a list

of influences on perceived luminance included in the
present model.

Contrast enhancement

Lightness is affected by contrast enhancement mecha-
nisms (LCEV ):

LVCE ¼ C� j S� ¼ ðCA þ CBÞ=2 j ðSA þ SBÞ=2; ð11Þ

where luminance biases are dependent on the average
luminance in center and surround regions. The resulting
effect is an amplification of the average difference
between the center and its surround. This bias would still
operate if stimulus details were not resolvable (e.g., if
sufficient blur was applied). Its effect is present in all
stimuli and does not depend on texture characteristics.

Inverted contrast

Contrast inversion disrupts texture continuity and, thus,
has a large effect on stimulus interpretation. Contrast
inversion (or texture rotation) introduces cues that are
inconsistent with the interpretation of homogeneously
colored occluders. Indeed, for a homogeneous figure over
a homogeneous background, the luminance difference at
the edge is constant. Introducing an occluder of constant
luminance but variable opacity modulates the amount of
that difference but not its sign. For example, if clouds
cover a light moon over a dark sky, then no part of the
moon can be darker than an adjacent part of the sky,
independently of how opaque the clouds are locally and
independently of whether the clouds are themselves light,
gray, or dark. Contrast inversion (or texture rotation)
create the possibility that the center–surround difference

Influence Restrictions Free parameter Equations

Percent transparency (T%) (CA m CB) Tmin, Tmax 6–9
Average luminance (L0V) None None 10
Contrast enhancement (LCEV ) None 5CE 11
Texture discontinuity (LINVV ) 1 j ! 5range, 5INV 12
Atmospheric darkening (LADV ) !(1 j ")(CA m CB) 5AD 13
Occluder removal (LOcc.V and LOcc._oppV ) !"(1 j +) 5Occ. 14–19
Most likely pixel (LMLPV ) !(1 j ")(1 j +) 5MLP 20–21

Table 2. List of the sources of influence on perceived luminance used in the current model. “Restrictions” show which conditions must be
met for the influence to be effective. The influence is absent if these restrictions result in a value of false or “0.” “Free parameter” indicates
the free parameter(s) used in the data fit. “Equations” point to the equations involved in estimating the strength and presence of the
influence. These influences are then summed in Equation 22. The percent transparency reports, which indicates the likelihood that a
circle was reported as being semi-transparent, is also shown. Many factors are dependent on texture continuity (!), texture complexity ("),
and/or contrast ranges consistent with semi-transparency (+). See text for details.
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could increase in certain places and decrease in other
places.
Thus, a common control condition used to break

transparency or segregation cues is to introduce sign
changes at the center–surround edge, either via rotating
the texture (e.g., Anderson & Winawer, 2005) or via a
texture polarity change as done here. Indeed, reversing the
polarity of the figure region or rotating the texture
contained within it breaks the Anderson–Winawer illu-
sion, causing us to see a textured figure over a textured
background, with no occluders or percept of transparency.
To describe this variable, we use the term “texture
continuity,” which is captured by the variable ! (see
Equation 3).
When a texture discontinuity is perceived, participants

perceive the texture contained within the central region as
belonging to the figure and report the lightest and darkest
parts of it (LINVV ) according to

LVINV ¼ T 1 j !ð Þ jCA j CBj
2

1 j 5range 1 j "ð Þ� �
; ð12Þ

that is, when contrast inversion is perceived (i.e., ! = 0,
thus 1 j ! = 1), lightness reports are made above and
below the mean center lightness, of amplitude equal to
half the center’s lightness range, with a small amplitude
modulation effect (5range) due to texture complexity (").
The modulation effect observed is a decrease of the effect
as texture complexity increases, for which the simplest
plausible explanation is that participants have a reduced
ability to perceive the true luminance range contained in
complex textures. This parallels a general reduced ability
to recover occlusion information in complex textures. It
also offers a plausible explanation for the amplitude
differences observed between the two strategies (see
Discounting the occluder and Most likely pixel (MLP)
sections below).

Atmospheric darkening

Atmospheric darkening (LADV ) is defined as the physical
reduction in light intensity when it passes through any
semi-transparent medium. Perceptual compensation for
this effect has not been investigated before. Anderson and
Winawer (2005, 2008) reported an unexplained bias, and
Poirier (2009) proposed that this bias was consistent with
atmospheric darkening. He further argued that this bias
was inconsistent with incomplete lightness constancy as
the bias is in the wrong direction in some conditions (see
Poirier, 2009).
In our model, atmospheric darkening is perceptually

compensated for when certain conditions are satisfied, i.e.,
(1) the center is textured (i.e., CA m CB), (2) the texture is
continuous (i.e., ! = 1; see Equation 3), and (3) the texture
is complex, thus it does not provide good segmentation

cues (" = 0 or 0.5; see Equation 13), all of which can be
represented as

LVAD ¼
0 if CA ¼ CB

!ð1j"Þ otherwise

;

8<
: ð13Þ

that is, LADV equals one if all of these conditions are
satisfied (or 0.5 for the thresholded texture), in which case
there is a perceptual compensation for atmospheric
darkening. This compensation biases lightness reports
toward lighter values, regardless of whether the figure is
lighter or darker than the background. With the thresh-
olded texture, LADV equals 0.5; thus, we assume that with a
texture that has some segmentation cues, the perceptual
compensation for atmospheric darkening will be partial.
Although the amount of atmospheric darkening depends

on the amount of transparency in real-world conditions, it
is currently not known if the same is true of perceptual
atmospheric darkening compensation. As the current
model does not predict the amount of transparency (rather
it predicts the likelihood that transparency of any
magnitude is reported), and as there is no data specific
to atmospheric darkening compensation in the literature,
we opted for a constant amount of atmospheric darkening
compensation when it occurs, for simplicity. Further
research on atmospheric darkening could help improve
this part of the model. The impact of atmospheric
darkening is relatively small compared to other compo-
nents of the model, thus small inaccuracies should not
impact the fit for other components of the model.

Discounting the occluder

The stimulus is often perceived as variable-opacity
clouds over a homogeneous circular figure (moon), itself
over a homogeneous background (sky). However, recov-
ering the figure’s physical characteristics such as its
luminance and transparency is not trivial. Poirier (2009)
presented two strategies reviewed below that can be used
to discount the occluder, and in some specific conditions,
he showed that the two strategies produce opposite
predictions. By comparing the data and predictions in
those specific conditions, he identified which of the two
strategies was used in which condition. The strategy
selected was dependent on occlusion cues, which was
dependent on texture complexity (", Equations 4, 19, and
21). We replicated his results and expanded both data and
model to an extra texture (i.e., thresholded clouds) and to
various contrast levels.
The first strategy named “discounting the occluder” is to

infer the occluder’s physical characteristics and then
discount those characteristics to estimate the figure’s
physical characteristics. This is what “occlusion” usually
refers to in the literature. The second strategy named

Journal of Vision (2012) 12(1):21, 1–22 Poirier, Gosselin, & Arguin 16

arguinm
Texte surligné 



“most likely pixel” (detailed later) is to infer the figure’s
physical characteristics by directly comparing the cen-
ter and surround regions, without estimating occluder
characteristics.
Discounting the occluder requires an understanding of

how the luminance of the figure and background changes
as it passes through a semi-transparent occluder. Accord-
ing to Metelli’s (1985; see also Ripamonti et al., 2004)
transparency rules, a homogeneous transparent circle
above a textured background will produce a stimulus
satisfying the following relationships:

CA ¼ SA8þ Occ:ð1j 8Þ and CB ¼ SB8þ Occ:ð1j 8Þ;
ð14Þ

where (SA, SB) are the surround luminance values, (CA,
CB) are the center luminance values, 8 is the figure’s
opacity, and “Occ.” is the occluder’s luminance. Center
and surround luminance values are easily extracted from
the stimulus, thus only 8 and Occ. need to be estimated.
This system of two equations with two unknowns is easily
solved, as the two functions intersect with

Occ: ¼ SACB j CASB
CB j CA j SB þ SA

; ð15Þ

providing an estimate of occluder luminance (Occ.) from
which occluder transparency can be estimated. Even if the
image does not contain a point where Occ. = Ci = Si, Occ.
can be estimated by extrapolation. The occluder’s trans-
parency can be measured as

8A ¼ CA j Occ:

SA j Occ:
or 8B ¼ CB j Occ:

SB j Occ:
; ð16Þ

where both formulas will provide the local transparency at
points A and B, respectively. Note that the occluder’s
transparency is variable over the image for most lumi-
nance configurations, i.e., 8A m 8B for most luminance
configurations. The value of Occ. was used to determine
the perceived luminance of the center. The occluder’s
transparency was not calculated or used further.
Perceived luminance of the center was defined as the

luminance contained in the center region that contrasted
most with the occluder’s luminance (Occ.):

FVOcc: ¼
CA j C� if jCA j Occ:j 9 jCB j Occ:j

CB j C
�

otherwise

;

8<
:

ð17Þ

where FOcc.V is the expected deviation from average
luminance when this strategy is used. Note that the
average luminance is removed here but re-added later

(as L0V, Equations 10 and 22). This strategy is accurate if
detailed luminance information is available on either side
of the edge and includes a range of occluder opacities.
However, participants did not always correctly use this

strategy. In our experiment, in several conditions, no part
of the cloud reached the estimated occluder luminance;
hence, no part of the cloud could be interpreted correctly
as fully opaque (e.g., figure contrast from 70.7% to
84.3%). In those conditions, participants often showed a
lightness bias in the opposite direction to FOcc., that is,
they would report CA instead of CB or vice versa. It could
be that in these cases, it becomes difficult to perceptually
estimate the occluder luminance (Occ.), and thus, both
alternatives become possible. This is indeed consistent
with subjective reports, where many participants reported
that the moon was bistable, i.e., switching between a light
moon behind dark clouds and a dark moon behind light
clouds. Our model included this by allowing the opposite
prediction in Equation 17 but only in cases where CA m SA
and CB m SB. This can be summarized as

FVOcc opp ¼
C
� j FVOcc: if ðCA m SAÞ and ðCB m SBÞ

n:=a: otherwise

;

8<
:

ð18Þ

where no value is given if either CA = SA or CB = SB. The
occluder removal strategy was modeled as being effective
when the following conditions were met: (1) the texture
was continuous, (2) the texture provided good segmenta-
tion cues, and (3) the circle was not perceived as a semi-
transparent surface. These conditions are included in the
calculation of the luminance bias:

LVOcc: ¼ !"ð1 j +ÞFVOcc: and LVOcc opp ¼ !"ð1 j +ÞFVOcc opp :

ð19Þ

This strategy gave lightness modulations that were half-
strength when the texture was the thresholded cloudy
texture.

Most likely pixel (MLP)

In some cases, the figure is partly occluded by a
variable-opacity occluder, but unlike described above
(see Discounting the occluder section), the occlusion cues
are insufficient to allow our perceptual system to segregate
the surfaces. In this case, a simpler strategy is adopted.
Partially opaque occluders may reduce contrast but do

not change luminance relationships. For example, the light
moon over a dark sky remains light over dark independent
of clouds’ lightness or opacity. Therefore, although the
occluder can change the contrast, it cannot change the
moon–sky polarity.
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A strategy that takes advantage of this relationship is to
select the lightest (or darkest) point of the center as being
that of the figure if the center is on average lighter (or
darker) than the background, e.g.,

FVMLP ¼
maxðCA;CBÞ j C� if C� 9 S�

minðCA;CBÞ j C
�

otherwise

;

8<
: ð20Þ

which does not require that the occluder be segregated or
that precise point-by-point correspondence between figure
and background luminance values be established. We
called this strategy the “most likely pixel” (MLP) because
in effect, the strategy selects the pixel that is most likely to
be descriptive of the moon, given the impoverished
information. For this strategy to work, we only need
average luminance of center and surround regions as well
as their luminance ranges.
However, participants did not always use this strategy.

Much like the occluder removal strategy, the MLP
strategy was modeled as being effective when the
following conditions were met: (1) the texture was
continuous, (2) the texture was not perceived as a semi-
transparent surface, and (3) unlike the occluder removal
strategy, the stimulus had to provide poor segmentation
cues. These conditions are included in the calculation of
the luminance bias:

LVMLP ¼ !ð1 j "Þð1 j +ÞFVMLP: ð21Þ

Note that because the occluder removal strategy is
effective with good segmentation cues, and the MLP
strategy is effective with poor segmentation cues, they are
usually mutually exclusive. The exception is for the
thresholded texture, where both strategies contribute half
of their effects. It is unclear whether this is perceptual
averaging or a result of averaging in the data analysis.

Occlusion vs. MLP

The two strategies discussed above (see Discounting the
occluder and Most likely pixel (MLP) sections above)
correctly recover figure luminance for various stimuli,
including the Anderson–Winawer (2005, 2008) stimuli
where figure contrast is high (see Results section).
However, these strategies make different predictions for
stimuli where the center is darker (or lighter) than the
surround, yet the predicted occluder corresponds to the
darker (or lighter parts) of the display (based on whether
CA , SA or CB , SB). This situation occurs in the
Anderson–Winawer luminance configurations with figure
contrast of 60.6%.
For example, Figures 2C and 2G show two stimuli where

the luminance ranges within the center and surround are

confined to 14.9–60.8 cd/m2 and 14.9–98.6 cd/m2,
respectively, that is, the center region is on average darker
than the surround region. The occlusion strategy (i.e.,
Equations 14–19) recovers 60.8 cd/m2 as figure luminance
(i.e., the lightest point) because it estimates the occluder at
14.9 cd/m2 (the luminance common to center and
surround). In contrast, the most likely pixel strategy (i.e.,
Equations 20 and 21) recovers 14.9 cd/m2 as figure
luminance (i.e., the darkest point) because on average the
center region is darker than the surround region. Therefore,
this particular luminance configuration can serve as a
diagnostic tool to establish which of the two strategies is
used, as demonstrated previously (Poirier, 2009). The
strategy used depends on texture properties.

Prediction

Lightness (LV) is given as the average luminance of the
surface plus a weighted sum of the various luminance
biases:

LV ¼ LV0 þ 5CELVCE þ 5invLVinv þ 5ADLVAD þ 5Occ:LVOcc:
þ 5MLPLVMLP ; ð22Þ

where 5CE, 5INV, 5AD, 5Occ., and 5MLP are weights
regulating the size of biases induced by the various
influences on perceived luminance.
These five weights (5CE, 5INV, 5AD, 5Occ., and 5MLP;

Equation 22) and three model parameters (i.e., 5range,
Tmin, and Tmax, from Equations 6, 7, and 11) were adjusted
by gradient descent to minimize squared error between
predictions and data, for both perceived luminance(s) and
percent transparency reports. Data were well fit by the
weights 5CE = 0.23, 5INV = 1.33, 5AD = 11.5, 5Occ. =
1.30, 5MLP = 0.972, 5range = 0.364, Tmin = 24.3%, and
Tmax = 95.3%.
The best-fit model indicates that (1) transparency

reports vary between 24.3% (Tmin) and 95.3% (Tmax), (2)
the luminance bias due to contrast enhancement is T23%
(0.55INV) of the difference between the average center
and surround luminances (5CE), (3) the luminance bias
present in stimuli with inverted contrasts is T66.5% of the
figure luminance range for two-tone texture and drops to
T42.3% for the cloudy texture (i.e., drops by 36.4% from
66.5%; 5range), (4) compensation for atmospheric darken-
ing adds 11.5 cd/m2, (5) the occluder strategy biases
luminance by T65.0% (0.55Occ.) of the luminance range of
the center, (6) and the “most likely pixel” strategy biases
luminance by T48.6% (0.55MLP) of the luminance range
of the center.
Note that the reduction of the effect size from the

occluder strategy (T65.0% for the simple texture) to the
most likely pixel strategy (T48.6% for the complex
texture) is very similar to that observed in inverted
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contrast (from T66.5% to T42.3%). This similarity
suggests that the inability to correctly recover the full
luminance range in complex textures observed in the
inverted-contrast conditions may well be what is causing
the reduced effect size observed in Anderson–Winawer
luminance configuration conditions.
The model replicates the main observations made

above, namely, (1) a different pattern of lightness emerges
for textures that do or do not provide visible segmentation
cues, i.e., cloudy textures support the MLP strategy,
whereas two-tone textures support the occluder removal
strategy, (2) the White effect is much stronger with
complex stimuli, reflecting mainly a different solution
for segmentation mechanisms (i.e., the occluder is
segmented in simple textures, whereas the occluder is

interpreted as semi-opaque but cannot be segmented for
complex textures, resulting in the use of the MLP
strategy), and (3) the Anderson–Winawer illusion changes
direction in one specific condition for simple textures,
which is due again to a different solution for segmentation
mechanisms than found at higher contrasts or for complex
textures.
Figure 10 breaks down the contributions to lightness of

different model components. The main contribution comes
from the two strategies discussed above (i.e., occluder
removal and MLP; see Equations 14–19 and 20–21,
respectively; see Figure 10, rows 4 and 5 for models
without occlusion or MLP, respectively and Figure 10,
rows 2 and 3 for models with occlusion and MLP but
without other factors), which when added to the average

Figure 10. Luminance estimates for all conditions above except transparency conditions, and model predictions. Each row presents the
model either in full (row 1), without any components (last row), or with various components excluded (rows 2–5). Model parameters were
not re-adjusted when components were removed, to show the contribution of components to the final solution. Removed components are
(2) contrast enhancement and atmospheric darkening, (3) inversion, (4) discounting the occluder, and (5) most likely pixel. Transparency
conditions not shown. See text for details.
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luminance within the figure area (Figure 10, row 6)
accounts for most of the variability (except for inverted-
contrast conditions). Most notably, the Anderson–
Winawer conditions require both strategies so that results
across textures can be accounted for. Together, contrast
enhancement and compensation for atmospheric darken-
ing (Figure 10, row 2) only add a small but systematic
lightness bias in most conditions.
Contrast enhancement contributes very little to lightness

overall (Figure 10, compare row 2 with row 1); however,
it is the only effect that adds a bias in all of the conditions
presented here. It is the only bias measurable with phase-
reversed (e.g., Figure 10, column 1, top and bottom lines
in graph), rotated, or untextured gray figures (e.g., Figure 10,
column 1, middle lines in graph). Contrast enhancement
also noticeably biases lightness in both the White effect
(e.g., Figure 10, column 2) and the inverse White effect
(e.g., Figure 10, column 3). Note, however, that contrast
enhancement adds to the existing segmentation-induced
bias in the White effect, whereas it subtracts from it in the
inverse White effect. This could explain why effects of
surround average luminance manipulations are easier to
measure in the inverse White effect than in the White
effect (e.g., Ripamonti & Gerbino, 2001).

Discussion

Summary

It is clear that models of luminance perception will need
to take into account Anderson and Winawer’s (2005,
2008) data, as well as the interaction of texture and
luminance configuration as shown here (see also Poirier,
2009).
Our data show that texture changes can have drastic

effects on scene interpretation, thus on perceived lightness
and/or transparency report rates. In our study, increasing
texture complexity (1) decreased perceived lightness
range and increased transparency report rates in the
inverted-contrast conditions, (2) greatly increased the
White effect possibly due to a shift in strategy, as well
as increased transparency report rates within the same
conditions, (3) changed the direction of the Anderson–
Winawer effect at the 60.6% figure contrast and removed
the drops in transparency report rates at the 60.6% and
88.2% figure contrast conditions, and (4) reduced the
incidence of binomial distributions in the 70.7% to 84.3%
Anderson–Winawer conditions.
In addition to the effects above paralleling lightness

effects, transparency report rates was a useful comple-
mentary measure, showing texture-related effects even
though perceived lightness remained relatively unaffected
in the following conditions: (1) the inverse White

conditions, (2) the transparency conditions, and (3) the
Anderson–Winawer conditions at 88.2% figure contrast.

Model summary

We presented here a mathematical model where differ-
ent lightness biases are summed. Some of these biases are
effective only if given conditions are met (e.g., texture
continuity or the availability of salient segmentation
cues), whereas other biases are always in effect. For a
variety of textures, the model predicts the White effect,
the inverted White effect, and the Anderson–Winawer
effect, and their interactions with different textures.
In the model proposed here, figure lightness is a sum of

the following biases or mechanisms: (1) texture disconti-
nuity detection, (2) the occluder removal mechanism that
interprets certain surfaces as occluders and removes them
from further analysis (or at least, removes them from
interfering with analyses of the moon’s luminance), (3)
the most likely pixel (MLP) mechanism that factors out
average effects of semi-transparent occluders, (4) con-
trast enhancement mechanism that increases luminance
differences possibly using simple center–surround mech-
anisms (thus, the effect depends on the geometry of the
stimulus, e.g., Anstis, 2005; Gilchrist, 1977; Ripamonti &
Gerbino, 2001), and (5) atmospheric darkening mecha-
nism that increases lightness of any surface behind a semi-
transparent occluder.
The idea that different effects on lightness are additive

is not a novel one. For example, Ripamonti and Gerbino
(2001; see also Anstis, 2005) suggested that assimilation
and contrast effects were additive and that the inverted
White effect could be explained as a special condition
where one of the two effects did not contribute to
lightness. Even though the present model differs from
their account on several points (e.g., the choice of
mechanisms contributing to the effect and the necessary
conditions for each mechanism to contribute), both
accounts suggest that multiple biases combine to produce
the illusions. More research is needed to establish which
lightness biases contribute how much to lightness and in
what conditions. Mathematical analyses such as the one
reported here could help in this endeavor, especially when
data are collected on a wider range of stimuli.
We suggest here that lightness is dependent on texture

characteristics because textures differ in the amount,
quality, and visibility of segmentation cues. Reducing the
visibility of these segmentation cues forces a simpler
interpretation of the different surfaces. Gratings of low
spatial frequency, especially square-wave gratings, offer
many cues for segmentation (e.g., T-functions, smooth
surfaces), thus figure, background, and occluder assign-
ments are simple and reflectance properties of the different
surfaces can be recovered fairly independently of each other
(Equations 14–19). Interestingly, random checkerboard
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textures such as shown in Figure 1 (see also Stuart’s rings:
Anstis, 2005) do not seem to reduce the visibility of
segmentation cues, as long as the check size is large
enough, as perceived lightness for those two textures seem
to mirror each other across luminance configurations.
The model presented here is meant to describe possible

causes of the effects observed here. It is unclear at present
what modifications will be needed to account for natural-
istic stimuli, geometric manipulations, cues to scene
interpretation, etc. However, we have provided a common
methodological and theoretical framework through which
the investigation of luminance perception can be pursued
with surfaces and textures interchangeably, across a wide
range of luminance configurations.

Seeing T-junctions

The results and model suggest the presence of two main
strategies that underlie stimulus interpretation: (1) dis-
counting the occluder and (2) the most likely pixel (MLP)
strategies. All other contributions to stimulus interpreta-
tion seem small by comparison. It is difficult to identify
which of these two strategies underlies scene interpreta-
tion using perceived lightness alone, as in some con-
ditions, both strategies produce similar predictions.
Transparency report rates is a more reliable indicator of
strategy use. The cloudy texture is linked to higher
transparency report rates and to higher concordance with
the MLP strategy, even at luminance configurations that
produce “blurred” T-junctions. In contrast, the two-tone
texture is linked to lower transparency report rates and to
higher concordance with the occluder-based strategy,
especially at luminance configurations that produce
T-junctions.
The presence or absence of the sudden dips in trans-

parency report rates at 60.6% and 88.2% figure contrasts
in the Anderson–Winawer conditions suggests a change of
strategy in the interpretation of these stimuli. Indeed, for
the two-tone texture at those specific figure contrasts, one
side of the center has exactly the same luminance as the
background on the same side (i.e., either CA = SA or CB =
SB), thus satisfying the conditions for occlusion to be
perceived (i.e., presence of a T-junction). At other
contrasts, X-junctions indicate transparency. However, it
appears that texture complexity “masks” these junctions,
thus removing the dips. Indeed, although “blurred”
versions of these T-junctions can be found in stimuli
constructed using the cloudy textures, these do not reduce
the transparency report rates.
It is not the specific values of 60.6% or 88.2% figure

contrast that produce this effect; rather, the effect occurs
because T-junctions occur in conditions where CA = SA or
CB = SB. It would be trivial to adjust background
luminance ranges to produce T-junctions at any figure
contrast level. These T-junctions are easy to find in two-
tone textures but more effortful to find in either thresholded

textures or cloudy textures. Results with thresholded
textures suggest that T-junctions are sufficient to support
occlusion perception, yet can be difficult to use reliably for
that purpose in complex textures at intermediate figure
contrasts (i.e., 70.7% to 84.3%).
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